Skip to main content
Log in

A Novel Bacterial Cellulose Aerogel Modified with PGMA via ARGET ATRP Method for Catalase Immobilization

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Formation of Poly(Glycidyl Methacrylate) (PGMA) films on bacterial cellulose (BC) supports (aerogels) was achieved via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP). Epoxy groups on PGMA were used for covalent coupling with catalase. Immobilized catalases on BC@PGMA were characterized by Fourier transform infrared spectroscopy (FTIR) and Typical scanning electron microscopy (SEM). The immobilized catalase amount reached a high value of 116 mg/g. Furthermore, the thermal, pH and storage stabilities of the immobilized catalase were improved significantly. After 10 use cycles, the BC@PGMA-catalase still retained approximately 63.5 % of the initial activity. This work demonstrates the potential of hierarchical nanomaterials for improving enzyme performance, leveraging the benefits of both nano- and macroscale supports. These results demonstrate that the BC@PGMA-catalase has high stability and good reusability, suggesting that the BC aerogel modified with PGMA may find applications in biotechnology and as biocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Sheldon and P. S. Van, Chem. Soc. Rev., 42, 6223 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. P. S. Coelho, E. M. Brustad, A. Kannan, and F. H. Arnold, Science, 123, 1434 (2012).

    Google Scholar 

  3. Q. Feng, Y. Zhao, A. Wei, C. Li, Q. Wei, and H. Fong, Environ. Sci. Technol., 48, 10390 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. F. K. Shieh, S. C. Wang, C. I. Yen, C. C. Wu, S. Dutta, L. Y. Chou, J. V. Morabito, P. Hu, M. H. Hsu, K. C. W. Wu, and C. K. Tsung, J. Am. Chem. Soc., 137, 4276 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. A. G. Grigoras, Biochem. Eng. J., 117, 1 (2017).

    Article  CAS  Google Scholar 

  6. S. Datta, L. R. Christena, and Y. R. S. Rajaram, Biotechnology, 3, 1 (2013).

    Google Scholar 

  7. Q. Ai, D. Yang, Y. Li, J. Shi, X. Wang, and Z. Jiang, Biochem. Eng. J., 83, 8 (2014).

    Article  CAS  Google Scholar 

  8. R. Díaz-Ayala, L. Torres-González, R. Pietri, C. R. Cabrera, and J. López-Garriga, ACS Omega, 2, 9021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. M. Najafi, A. R. Keshtkar, and M. A. Moosavian, Part. Sci. Technol., 36, 340 (2018).

    Article  CAS  Google Scholar 

  10. M. F. Canbolat, H. B. Savas, and F. Gultekin, J. Appl. Polym. Sci., 4, 134 (2017).

    Google Scholar 

  11. H. Wang, J. Wang, J. Wang, R. Zhu, Y. Shen, Q. Xu, and X. Hu, Sens. Actuators, B: Chem., 247, 146 (2017).

    Google Scholar 

  12. J. Wang, W. Zhao, B. Wang, G. Pei, and C. Li, J. Appl. Polym. Sci., 16, 134 (2012).

    Google Scholar 

  13. M. Cheng, Z. Qin, S. Hu, S. Dong, Z. Ren, and H. Yu, ACS Biomater. Sci. Eng., 3, 1666 (2017).

    Article  CAS  Google Scholar 

  14. S. Y. H. Abdalkarim, H. Y. Yu, D. Wang, and J. Yao, Cellulose, 24, 2925 (2017).

    Article  CAS  Google Scholar 

  15. M. Taheran, M. Naghdi, S. K. Brar, E. J. Knystautas, M. Verma, and R. Y. Surampalli, ACS Sustainable Chem. Eng., 5, 10430 (2017).

    Article  CAS  Google Scholar 

  16. M. Iguchi, S. Yamanaka, and A. Budhiono, J. Mater. Sci., 35, 261(2000).

    Article  CAS  Google Scholar 

  17. G. Helenius, H. Bäckdahl, A. Bodin, U. Nannmark, P. Gatenholm, and B. Risberg, J. Biomed. Mater. Res. Part A., 76, 431 (2006).

    Article  CAS  Google Scholar 

  18. Z. Y. Wu, C. Li, H. W. Liang, J. F. Chen, and S. H. Yu, Angew. Chem. Int. Ed., 125, 2997 (2013).

    Article  Google Scholar 

  19. J. O. Zoppe, R. A. Venditti, and O. J. Rojas, J. Colloid Interface Sci., 369, 202 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. V. Hooda, Appl. Biochem. Biotechnol., 172, 115 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Q. Feng, Y. Hao, A. Wei, C. Li, Q. Wei, and H. Fong, Environ. Sci. Technol., 48, 10390 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. T. C. Mokhena and A. S. Luyt, J. Clean. Prod., 156, 470 (2017).

    Article  CAS  Google Scholar 

  23. X. Ji, Z. Su, C. Liu, P. Wang, and S. Zhang, Biochem. Eng. J., 121, 147 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuie Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zheng, H., Li, Y. et al. A Novel Bacterial Cellulose Aerogel Modified with PGMA via ARGET ATRP Method for Catalase Immobilization. Fibers Polym 20, 520–526 (2019). https://doi.org/10.1007/s12221-019-8650-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8650-4

Keywords

Navigation