Skip to main content
Log in

Cryogenic Compression Properties and Failure Mechanism of Lightweight 3D MWK Carbon Fabric Reinforced Epoxy Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Lightweight 3D MWK carbon fabric reinforced epoxy composites are fabricated successfully. The compressive experiments on the 3D MWK carbon/epoxy composites with different fiber architecture are performed in three directions (longitudinal, transverse and in-plane) at room and liquid nitrogen temperature (low as -196 °C). Macro-Fracture morphology and SEM micrographs are examined to understand the deformation and failure mechanism. The results show 3D MWK carbon/epoxy composites have extremely compression properties at cryogenic temperature. The stress-strain curves and compression properties at liquid nitrogen temperature are improved significantly than those at room temperature. Meanwhile, the properties decrease with the increase of fiber orientation angle at room and cryogenic temperatures. Moreover, the compression properties are different in the longitudinal, in-plane and transverse direction. The results also show matrix is solidified and fiber/matrix interface adhesion is enhanced at cryogenic temperature and the main failure modes of material behave as fiber layers delaminating, fibers and bulk matrix shear fracture. In addition, the failure mechanism can be significantly affected by the temperature, fiber architecture and load mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hufenbach, M. Gude, R. Böhm, and M. Zscheyge, Mater. Des., 32, 4278 (2012).

    Article  CAS  Google Scholar 

  2. D. S. Li, C. Q. Zhao, N. Jiang, Q. Q. Yao, and L. Jiang, Fiber. Polym., 16, 875 (2015).

    Article  CAS  Google Scholar 

  3. H. Alshahrani and M. Hojjati, Mater. Des., 124, 211 (2017).

    Article  CAS  Google Scholar 

  4. D. S. Li, N. Jiang, L. Jiang, T. Q. Ge, and N. Lu, Fiber. Polym., 16, 2034 (2015).

    Article  Google Scholar 

  5. L. Gemi, M. A. Koroglu, and A. Ashour, Compos. Struct., 187, 157 (2018).

    Article  Google Scholar 

  6. G. A. Bibo, P. J. Hogg, and M. Kemp, Compos. Sci. Technol., 57, 1221 (1997).

    Article  CAS  Google Scholar 

  7. H. Kong, A. P. Mouritz, and R. Paton, Compos. Struct., 66, 249 (2004).

    Article  Google Scholar 

  8. F. Edgren and L. E. Asp, Compos. Pt. A-Appl. Sci. Manuf., 36, 173 (2005).

    Article  Google Scholar 

  9. F. Edgren, D. Mattsson, L. E. Asp, and J. Varna, Compos. Sci. Technol., 64, 675 (2004).

    Article  Google Scholar 

  10. H. J. Chun, H. W. Kim, and J. H. Byun, Key Eng. Mater., 306-308, 817 (2006).

    Article  Google Scholar 

  11. B. Sun, H. Hu, and B. Gu, Compos. Struct., 78, 84 (2007).

    Article  Google Scholar 

  12. D. Mattsson, R. Joffe, and J. Varna, Eng. Fract. Mech., 75, 2666 (2008).

    Article  Google Scholar 

  13. T. Sugie, A. Nakai, and H. Hamada, Compos. Pt. A-Appl. Sci. Manuf., 40, 1982 (2009).

    Article  CAS  Google Scholar 

  14. A. Yudhanto, N. Watanabe, Y. Iwahori, and H. Hoshi, Mater. Des., 35, 563 (2012).

    Article  CAS  Google Scholar 

  15. A. Yudhanto, N. Watanabe, Y. Iwahori, and H. Hoshi, Compos. Sci. Technol., 86, 52 (2013).

    Article  CAS  Google Scholar 

  16. S. V. Lomov, D. S. Ivanov, T. C. Truong, I. Verpoest, F. Baudry, and K. Vanden, Compos. Sci. Technol., 68, 2340 (2008).

    Article  CAS  Google Scholar 

  17. K. Vallons, I. Duque, S. V. Lomov, and I. Verpoest, Compos. Pt. A-Appl. Sci. Manuf., 42, 16 (2011).

    Article  CAS  Google Scholar 

  18. D. S. Li, H. W. Duan, N. Jiang, and L. Jiang, Fiber. Polym., 16, 1349 (2015).

    Article  CAS  Google Scholar 

  19. D. S. Li, N. Jiang, C. Q. Zhao, L. Jiang, and Y. Tan, Compos. Pt. B-Eng., 68, 126 (2015).

    Article  CAS  Google Scholar 

  20. Z. Gao, P. Ma, G. Jiang, and H. Cong, Fiber. Polym., 17, 1497 (2016).

    Article  CAS  Google Scholar 

  21. M. G. Kim, S. G. Kang, and C. G. Kim, Compos. Struct., 79, 84 (2007).

    Article  Google Scholar 

  22. M. S. Kumar, N. Sharma, and B. C. Ray, J. Rein. Plast. Compos., 28, 1297 (2009).

    Article  CAS  Google Scholar 

  23. Z. Pan, B. Gu, and B. Sun, Compos. Part B: Eng., 77, 379 (2015).

    Article  CAS  Google Scholar 

  24. S. Morkavuk, U. Koklü, M. Bag, and L. Gemi, Compos. Pt. B-Eng., 147, 1 (2018).

    Article  CAS  Google Scholar 

  25. L. Gemi, O. S. Sahin, and A. Akdemir, Compos. Pt. BEng., 119, 196 (2017).

    Article  Google Scholar 

  26. L. Gemi, Compos. Pt. B-Eng., 153, 217 (2018).

    Article  CAS  Google Scholar 

  27. L. Gemi, M. M. Uludag, D. SoyluGemi, and O. S. Sahin, Compos. Pt. B-Eng., 149, 38 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian-sen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ds., Duan, Hw. & Jiang, L. Cryogenic Compression Properties and Failure Mechanism of Lightweight 3D MWK Carbon Fabric Reinforced Epoxy Composites. Fibers Polym 20, 642–650 (2019). https://doi.org/10.1007/s12221-019-8639-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8639-z

Keywords

Navigation