Skip to main content
Log in

Tensile Initial Damage and Final Failure Behaviors of Glass Plain-weave Fabric Composites in On- and Off-axis Directions

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Mechanical properties and failure behavior of glass plain-weave fabric composites under on-axis (i.e. 0 and 90° direction) and off-axis (i.e. θ=5, 10, 15, 30, 45 and 60°) tensile loading conditions have been experimentally investigated. Acoustic emissions (AE) monitoring and step-by-step optical observation with interrupted tension tests were adopted to study the character and failure mechanisms of various fiber orientations. The experimental results indicate that both off-axis elastic modulus and strength degrade with increasing off-axis angle in all cases. There is a good agreement for the axial modulus Ex between the experimental results and theory results obtained from orthotropic linear elasticity theory. Adoption of the principal shear strength S45°=28.5 MPa which is evaluated using the tensile strength based on the 45° specimen allows better predictions of the off-axis tensile strengths by means of the Tsai-Hill failure criterion. Off-axis specimens exhibit lower knee point stress than on-axis ones and initial fracture strain monitored by AE (>75 dB) has a good fit to knee-point strain in this study. Tensile strength exhibits an increased tendency toward the delay of initial fracture behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Pandita, G. Huysmans, M. Wevers, and I. Verpoest, Compos. Pt. A Appl. Sci. Manuf., 32, 1533 (2001).

    Article  Google Scholar 

  2. M. Bizeul, C. Bouvet, J. J. Barrau, and R. Cuenca, Compos. Sci. Technol., 71, 289 (2011).

    Article  CAS  Google Scholar 

  3. R. Foroutan, J. Nemes, H. Ghiasi, and P. Hubert, Compos. Struct., 106, 264 (2013).

    Article  Google Scholar 

  4. D. A. Cai, J. T. Tang, G. M. Zhou, X. P. Wang, C. Li, and V. V. Silberschmidt, Polym. Test., 60, 307 (2017).

    Article  CAS  Google Scholar 

  5. A. Doitrand, C. Fagiano, V. Chiaruttini, F. H. Leroy, A. Mavel, and M. Hirsekorn, Compos. Sci. Technol., 119, 1 (2015).

    Article  CAS  Google Scholar 

  6. M. Kawai and T. Taniguchi, Compos. Pt. A Appl. Sci. Manuf., 37, 243 (2006).

    Article  CAS  Google Scholar 

  7. J. H. Hu, C. J. Gao, S. Z. He, W. J. Chen, Y. P. Li, B. Zhao, T. B. Shi, and D. Q. Yang, Compos. Struct., 171, 92 (2017).

    Article  Google Scholar 

  8. D. A. Cai, G. M. Zhou, X. P. Wang, C. Li, and J. Deng, Polym. Test., 58, 142 (2017).

    Article  CAS  Google Scholar 

  9. T. Bergmann, S. Heimbs, and M. Maier, Compos. Struct., 125, 362 (2015).

    Article  Google Scholar 

  10. T. Osada, A. Nakai, and H. Hamada, Compos. Struct., 61, 333 (2003).

    Article  Google Scholar 

  11. S. C. Woo and N. S. Choi, Compos. Sci. Technol., 67, 1451 (2007).

    Article  Google Scholar 

  12. M. Johnson and P. Gudmundson, Compos. Sci. Technol., 60, 2803 (2000).

    Article  CAS  Google Scholar 

  13. I. M. De Rosa, C. Santulli, and F. Sarasini, Compos. Pt. A Appl. Sci. Manuf., 40, 1456 (2009).

    Article  CAS  Google Scholar 

  14. N. D. Greef, L. Gorbatikh, S. V. Lomov, and I. Verpoest, Compos. Pt. A Appl. Sci. Manuf., 42, 1635 (2011).

    Article  CAS  Google Scholar 

  15. X. M. Zhuang and X. Yan, Compos. Sci. Technol., 66, 444 (2006).

    Article  CAS  Google Scholar 

  16. Z. L. Xu, A. Nakai, Y. Y. Yang, and H. Hamada, O. J. Comp. Mater., 8, 11 (2017).

    Google Scholar 

  17. Y. Ma, T. Yokozeki, M. Ueda, T. Sugahara, Y. Y. Yang, and H. Hamada, Compos. Sci. Technol., 151, 268 (2017).

    Article  CAS  Google Scholar 

  18. ASTM, D3039/D3039M, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, 2000.

    Google Scholar 

  19. B. D. Agarwal, L. J. Broutman, and K. Chandrashekhara, “Analysis and Performance of Fiber Composites”, pp.287-31, John Wiley & Sons, London, 1990.

    Google Scholar 

  20. V. D. Azzi and S. W. Tsai, Exp. Mech., 5, 283 (1965).

    Article  Google Scholar 

  21. O. Khondker, T. Fukui, A. Nakai, and H. Hamada, Compos. Pt. A Appl. Sci. Manuf., 35, 1185 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Wang, W. & Hou, Z. Tensile Initial Damage and Final Failure Behaviors of Glass Plain-weave Fabric Composites in On- and Off-axis Directions. Fibers Polym 20, 147–157 (2019). https://doi.org/10.1007/s12221-019-8468-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8468-0

Keywords

Navigation