Skip to main content
Log in

Crashworthy and Performance-cost Characteristics of Aluminum-CFRP Hybrid Tubes under Quasi-static Axial Loading

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Metal/composite hybrid thin-walled structures combine the low cost of metallic materials and the high strength-toweight ratio of composites and thus have the potential to be utilized as cost-effective energy absorbers for vehicle applications. This study aimed to examine the crushing behaviors and performance-to-cost ratio of aluminum/carbon fiberreinforced plastic (CFRP) hybrid tubes under quasi-static axial loading. First, a single aluminum tube, a single CFRP tube and an aluminum/CFRP hybrid tube were tested to validate numerical models. The experimental results showed that the total energy absorption (EA) of the aluminum/CFRP hybrid tube was 32.46 % higher than the sum of that of the individual parts, and the special energy absorption (SEA) of the hybrid tube was improved by 105.26 % compared with that of the single aluminum tube. Then, the effects of the orientation angles ([±15°]n, [±45°]n, [±75°]n, [±90°]n, [90°/0°]n, n=2, 4, 6) and thicknesses of the CFRP tube wall (4-ply, 8-ply, 12-ply) on the crashworthiness of the hybrid tube were studied through validated numerical models. The numerical results showed that as the orientation angle increased, SEA, EA and the mean crushing force (Fmean) decreased first and then increased; in addition, the hybrid tubes with orientation angles of [±45°]n and [90°/0 °]n (n=2, 4, 6) consistently exhibited the worst and best crashworthiness, respectively. Furthermore, the SEA, EA, and Fmean of the hybrid tube increased with increasing thickness of the CFRP tube wall. Finally, the performance-to-cost ratio (SEA/cost) of the hybrid tube was analyzed, and the results show that aluminum/CFRP hybrid tubes with a smaller wall thickness of the CFRP tube exhibits superior potential in terms of both cost and performance for automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Deletombe, D. Delsart, D. Kohlgrüber, and A. F. Johnson, Aerosp. Sci. Technol., 4, 189 (2000).

    Article  Google Scholar 

  2. D. H. Kima, D. H. Choia, and H. S. Kim, Compos. Part. BEng., 58, 400 (2014).

    Article  CAS  Google Scholar 

  3. P. Feraboli, Int. J. Vehicle Des., 44, 233 (2007).

    Article  Google Scholar 

  4. G. Belingardi, A. T. Beyene, and E. G. Koricho, Compos. Struct., 102, 217 (2013).

    Article  Google Scholar 

  5. W. Tan, B. G. Falzon, M. Price, and H. Liu, Comput. Struct., 153, 914 (2016).

    Article  Google Scholar 

  6. S. H. Hesse, D. H.-J. A. Lukaszewicz, and F. Duddeck, Comput. Struct., 129, 236 (2015).

    Article  Google Scholar 

  7. S. Boria and G. Belingardi, Int. J. Crashworthiness, 17, 345 (2012).

    Article  Google Scholar 

  8. P. H. Thornton and R. A. Jeryan, Int. J. Impact. Eng., 7, 167 (1988).

    Article  Google Scholar 

  9. M. R. Bambach, Thin. Wall. Struct., 74, 1 (2014).

    Article  Google Scholar 

  10. Y. Ma, T. Sugahara, Y. Yang, and H. Hamada, Compos. Struct., 123, 301 (2015).

    Article  Google Scholar 

  11. J. Xu, Y. Ma, Q. J. Zhang, T. Sugahara, Y. Q. Yang, and H. Hamada, Compos. Struct., 139, 130 (2016).

    Article  Google Scholar 

  12. D. Y. Hu, C. Z, X. B. Ma, and B. Song, Compos. Part AAppl. S., 90, 489 (2016).

    Article  CAS  Google Scholar 

  13. J. F. Wang, J. H. Zhao, T. Liu, Z. Q. He, K. Li, and W. F. Yang, J. Reinf. Plast. Comp., 34, 2006 (2015).

    Article  CAS  Google Scholar 

  14. W. Q. Wang, M. N. Sheikh, and M. N. S. Hadi, Thin. Wall. Struct., 95, 88 (2015).

    Article  Google Scholar 

  15. R. Kalhor and S. W. Case, Compos. Struct., 130, 44 (2015).

    Article  Google Scholar 

  16. Q. Liu, H. L. Xing, Y. Ju, Z. Y. Ou, and Q. Li, Compos. Struct., 117, 1 (2014).

    Article  Google Scholar 

  17. J. C. Huang and X. W. Wang, Int. J. Crashworthiness, 15, 625 (2010).

    Article  Google Scholar 

  18. H. W. Song, Z. M. Wan, Z. M. Xie, and X. W. Du, Int. J. Impact. Eng., 24, 385 (2000).

    Article  Google Scholar 

  19. R. A. Alia, Z. W. Guan, R. Umer, and W. J. Cantwell, J. Reinf. Plast. Comp., 34, 731 (2015).

    Article  CAS  Google Scholar 

  20. M. R. Bambach, H. H. Jama, and M. Elchalakani, Thin. Wall. Struct., 47, 1112 (2009).

    Article  Google Scholar 

  21. M. R. Bambach, Thin. Wall. Struct., 66, 15 (2013).

    Article  Google Scholar 

  22. K. C. Shin, J. J. Lee, K. H. Kim, M. C. Song, and J. S. Huh, Compos. Struct., 57, 279 (2002).

    Article  Google Scholar 

  23. H. C. Kim, D. K. Shin, and J. J. Lee, Compos. Part. BEng., 51, 345 (2013).

    Article  CAS  Google Scholar 

  24. H. C. Kim, D. K. Shin, J. J. Lee, and J. B. Kwon, Compos. Struct., 112, 1 (2014).

    Article  Google Scholar 

  25. H. E. Hage, P. K. Mallick, and N. Zamani, Compos. Struct., 73, 505 (2006).

    Article  Google Scholar 

  26. C. Reuter and T. Tröster, Thin. Wall. Struct., 117, 1 (2017).

    Article  Google Scholar 

  27. M. Dlugosch, J. Fritsch, D. Lukaszewicz, and S. Hiermaier, Compos. Struct., 174, 338 (2017).

    Article  Google Scholar 

  28. J. S. Kim, H. J. Yoon, and K. B. Shin, Int. J. Impact. Eng., 38, 198 (2011).

    Article  Google Scholar 

  29. H. Fang, M. R. Rohani, Z. Liu, and M. Horstemeyer, Compos. Struct., 83, 2121 (2015).

    Article  Google Scholar 

  30. V. Buljak and G. Maier, Eng. Struct., 33, 492 (2011).

    Article  Google Scholar 

  31. A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis, and D. P. Papapostolou, Compos. Struct., 74, 213 (2006).

    Article  Google Scholar 

  32. X. R. Xiao, M. E. Botkin, and N. L. Johnson, Thin. Wall. Struct., 47, 740 (2009).

    Article  Google Scholar 

  33. Z. Hashin, J. Appl. Mech., 47, 329 (1980).

    Article  Google Scholar 

  34. ABAQUS Inc., Abaqus User's Manual, 6, 12 (2012).

  35. A. Faggiani and B. G. Falzon, Compos Part A-Appl. S., 41, 737 (2010).

    Article  CAS  Google Scholar 

  36. C. Zhang, N. Li, W. Z. Wang, W. K. Binienda, and H. B. Fang, Compos. Struct., 125, 104 (2015).

    Article  Google Scholar 

  37. M. L. Benzeggagh and M. Kenane, Compos. Sci. Technol., 56, 439 (1996).

    Article  CAS  Google Scholar 

  38. I. Shahid and F. K. Chang, J. Compos. Mater., 29, 926 (1995).

    Article  Google Scholar 

  39. S. T. Pinho, P. Robinson, and L. Iannucci, Compos. Sci. Technol., 66, 2069 (2006).

    Article  CAS  Google Scholar 

  40. M. R. Bambach, Compos. Part. B-Eng., 41, 550 (2010).

    Article  CAS  Google Scholar 

  41. J. Meredith, E. Bilson, R. Powe, E. Collings, and K. Kirwan, Compos. Struct., 124, 206 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peilong Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, P., Yu, Q., Huang, R. et al. Crashworthy and Performance-cost Characteristics of Aluminum-CFRP Hybrid Tubes under Quasi-static Axial Loading. Fibers Polym 20, 384–397 (2019). https://doi.org/10.1007/s12221-019-8451-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8451-9

Keywords

Navigation