Advertisement

Fibers and Polymers

, Volume 20, Issue 1, pp 57–62 | Cite as

Engineering of a Bacillus subtilis Strain Deficient in Cellulase: Application in Degumming of Ramie

  • Qi Yang
  • Shengwen Duan
  • Lifeng Cheng
  • Xiangyuan Feng
  • Ke Zheng
  • Chunliang Xie
  • Zhiyuan Liu
  • Yuande PenEmail author
Article
  • 50 Downloads

Abstract

Degumming is the most important step before ramie fibers are used in textile industry. Conventional chemical degumming technology with alkaline treatment at high temperature causes critical problems in environment. In addition to multiple degumming enzymes (e.g. pectinases and xylanases), Bacillus subtilis strain 168 can also produce cellulase which brings irreversible damage to ramie fibers. In this study, a strain deficient in cellulase was constructed by insertional inactivation of gene eglS to make it suitable for microbial degumming. Results showed that the cellulase activity was not detected in strain ΔeglS, after 25 h of incubation with strain ΔeglS, the weight loss of the ramie fibers was 20.20 %. Though the residual gum content of ramie fibers obtained in microbial degumming process was 19.67 %, microbial intervention followed by diluted alkaline solution treatment showed lower residual gum content (2.73 %) than chemical degumming (2.96 %). The single fiber breaking strength value of ramie fibers from bio-chemical degumming process reached 27.19 cN, which was the highest of three samples. Moreover, bio-chemical degumming process resulted in a 75 % decrease of alkali dosage as compared with chemical degumming process. This study provides a suggestion to genetically modify wild-type strain in order to protect ramie fibers from cellulase damage, and indicates a sustainable alternative for the traditional chemical degumming in the textile industry.

Keywords

Ramie fibers Microbial degumming Bacillus subtilis eglS Insertional inactivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12221_2019_8444_MOESM1_ESM.pdf (14 kb)
Supplementary material, approximately 13.6 KB.

References

  1. 1.
    F. F. Guo, M. Y. Zou, X. Z. Li, J. Zhao, and Y. B. Qu, Biomed. Res. Int., 2013, Article ID 212315 (2013).Google Scholar
  2. 2.
    C. J. Zhang, J. Yao, C. Zhou, L. W. Mao, G. M. Zhang, and Y. H. Ma, BMC. Biotechnol., 13, 26 (2013).CrossRefGoogle Scholar
  3. 3.
    J. J. Zhou, Z. L. Li, and C. W. Yu, Fiber. Polym., 18, 1891 (2017).CrossRefGoogle Scholar
  4. 4.
    S. W. Duan, X. Y. Feng, L. F. Cheng, Y. D. Peng, K. Zheng, and Z. C. Liu, AMB. Express., 6, 86 (2016).CrossRefGoogle Scholar
  5. 5.
    Z. C. Liu, S. W. Duan, Q. X. Sun, Y. D. Peng, X. Y. Feng, K. Zheng, Z. X. Hu, and Y. X. Zhang, Text. Res. J., 82, 1553 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Kapoor and R. C. Kuhad, Lett. Appl. Microbiol., 34, 317 (2002).CrossRefGoogle Scholar
  7. 7.
    S. X. Xu, X. Qin, B. Liu, D. Q. Zhang, W. Zhang, K. Wu, and Y. H. Zhang, Lett. Appl. Microbiol., 60, 181 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Basu, M. N. Saha, D. Chattopadhyay, and K. Chakrabarti, Lett. Appl. Microbiol., 48, 593 (2009).CrossRefGoogle Scholar
  9. 9.
    S. Basu, M. N. Saha, D. Chattopadhyay, and K. Chakrabarti, J. Ind. Microbiol. Biot., 36, 239 (2009).CrossRefGoogle Scholar
  10. 10.
    P. Fan, F. He, Y. Yang, M. Z. Ao, J. Ouyang, Y. Liu, and L. J. Yu, Biochem. Eng. J., 97, 50 (2015).CrossRefGoogle Scholar
  11. 11.
    G. Guo, Z. C. Liu, J. F. Xu, J. P. Liu, X. Y. Dai, D. P. Xie, K. Q. Peng, X. Y. Feng, S. W. Duan, K. Zheng, L. F. Cheng, and Y. G. Fu, J. Basic. Microb., 52, 419 (2012).CrossRefGoogle Scholar
  12. 12.
    I. Hirose, K. Sano, I. Shioda, M. Kumano, K. Nakamura, and K. Yamane, Microbiology-Uk, 146, 65 (2000).CrossRefGoogle Scholar
  13. 13.
    M. Y. Zou, X. Z. Li, W. J. Shi, F. F. Guo, J. Zhao, and Y. B. Qu, Process. Biochem., 48, 1143 (2013).CrossRefGoogle Scholar
  14. 14.
    X. W. Wang, Z. H. Lu, T. Xu, J. N. Selvaraj, L. Yi, and G. M. Zhang, Biochem. Eng. J., 129, 74 (2018).CrossRefGoogle Scholar
  15. 15.
    R. Ruller, J. C. Rosa, V. M. Faca, L. J. Greene, and R. J. Ward, Biotechnol. Appl. Bioc., 43, 9 (2006).CrossRefGoogle Scholar
  16. 16.
    Q. Zheng, R. Shi, X. C. Zhu, L. Huang, J. Cai, W. B. Han, and Z. N. Xu, Process. Biochem., 47, 1186 (2012).CrossRefGoogle Scholar
  17. 17.
    C. R. Santos, J. H. Paiva, M. L. Sforca, J. L. Neves, R. Z. Navarro, J. Cota, P. K. Akao, Z. B. Hoffmam, A. N. Meza, J. H. Smetana, M. L. Nogueira, I. Polikarpov, J. Xavier-Neto, F. M. Squina, R. J. Ward, R. Ruller, A. C. Zeri, and M. T. Murakami, Biochem. J., 441, 95 (2012).CrossRefGoogle Scholar
  18. 18.
    X. Z. Zhang, N. Sathitsuksanoh, Z. G. Zhu, and Y. H. P. P.Zhang, Metab. Eng., 13, 364 (2011).CrossRefGoogle Scholar
  19. 19.
    M. S. Rhee, L. S. Wei, N. Sawhney, J. D. Rice, F. J. St John, J. C. Hurlbert, and J. F. Preston, Appl. Environ. Microb., 80, 917 (2014).CrossRefGoogle Scholar
  20. 20.
    F. Bruhlmann, Appl. Environ. Microb., 61, 3580 (1995).Google Scholar
  21. 21.
    R. Saikia, P. Boruah, and R. Samanta, Indian J. Fibre. Text., 34, 187 (2009).Google Scholar
  22. 22.
    Y. Cheng, Z. C. Liu, J. Zeng, L. F. Cheng, Z. Yan, S. W. Duan, X. Y. Feng, K. Zheng, X. Zheng, and R. J. Wang, Biotechnol. Lett., 38, 2089 (2016).CrossRefGoogle Scholar
  23. 23.
    S. Duan, L. Cheng, X. Feng, K. Zheng, Y. Peng, and Z. Liu, Text. Res. J., 88, 1377 (2018).CrossRefGoogle Scholar
  24. 24.
    L. S. Zheng, Y. M. Du, and J. Y. Zhang, Bioresource. Technol., 78, 89 (2001).CrossRefGoogle Scholar
  25. 25.
    L. P. Liao, A. P. Xiao, J. Leng, X. L. Tian, X. A. Yang, Y. Cheng, and Q. L. Nie, Plant Fiber Sciences in China, 4, 210 (2010).Google Scholar
  26. 26.
    Q. Yang, Y. L. Li, H. J. Yang, J. Rang, S. J. Tang, L. He, L. Li, X. Z. Ding, and L. Q. Xia, Appl. Microbiol. Biot., 99, 8629 (2015).CrossRefGoogle Scholar
  27. 27.
    G. L. Liu, Z. F. Li, R. Y. Ding, and C. W. Yu, Emerging Focus on Advanced Materials, Pts 1 and 2, 306-307, 1580 (2011).Google Scholar
  28. 28.
    S. Basu, A. Roy, A. Ghosh, A. Bera, D. Chattopadhyay, and K. Chakrabarti, Biodegradation, 22, 153 (2011).CrossRefGoogle Scholar
  29. 29.
    Q. S. Liu, Q. Y. Shen, X. Y. Bian, H. N. Chen, J. Fu, H. L. Wang, P. Lei, Z. H. Guo, W. Chen, D. J. Li, and Y. M. Zhang, Sci. Rep-UK., 6, Article number: 34623 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Qi Yang
    • 1
  • Shengwen Duan
    • 1
  • Lifeng Cheng
    • 1
  • Xiangyuan Feng
    • 1
  • Ke Zheng
    • 1
  • Chunliang Xie
    • 1
  • Zhiyuan Liu
    • 1
  • Yuande Pen
    • 1
    Email author
  1. 1.Institute of Bast Fiber CropsChinese Academy of Agriculture SciencesChangshaChina

Personalised recommendations