Correlations between Fibre Diameter, Physical Parameters, and the Mechanical Properties of Randomly Oriented Biobased Polylactide Nanofibres

Abstract

In this study, the tensile properties of systematically optimised, biodegradable polylactide (PLA) electrospum fibres are investigated in order to illuminate the influences of the factors that affect their mechanical properties such as fibre diameter, alignment, inter-fibre bonding, mat porosity, and packing density. The effect of fibre diameter was studied by varying the PLA concentration. The effect of fibre-fibre interaction enhancement was also investigated. The extent of anisotropy on the mechanical properties of the mats was evaluated as a function of the collector drum speed in the rotational (0°), transverse (90°), and diagonal (45°) directions. The results demonstrate a strong correlation between the fibre diameter and the mechanical properties. Thinner fibres exhibit better mechanical properties, which are then further enhanced by fibre fusion and alignment. Other mat characteristics have minimal effects on the mechanical properties. The fibres produced at drum speeds of <250 rpm, exhibit isotropic character. Fibre alignment is observed beyond this speed, with strong enhancement of properties in the direction of drum rotation. In summary, randomly oriented fibres with isotropic responses to mechanical properties may be used in applications such as air filtration.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Huang, Y. Cao, Z. Hung, S. A. Imbraguglio, Z. Wang, X. Peng, and Z. Guo, Macromol. Mater. Eng., 301, 1327 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    R. Wang, Y. Liu, B. Li, B. S. Hsiao, and B. Chu, J. Membr. Sci., 392, 167 (2012).

    Article  CAS  Google Scholar 

  3. 3.

    R. Inai, M. Kotaki, and S. Ramakrishna, J. Polym. Sci. Part B: Polym. Phys., 43, 3205 (2005).

    Article  CAS  Google Scholar 

  4. 4.

    K. Uh, T. Kim, C. W. Lee, and J.-M. Kim, Macromol. Mater. Eng., 301, 1320 (2016).

    Article  CAS  Google Scholar 

  5. 5.

    M. Al-Jallad and Y. Atassi, J. Appl. Polym. Sci., 133, 43687 (2016).

    Article  CAS  Google Scholar 

  6. 6.

    K. Liu, Z. Xiao, P. Ma, J. Chen, M. Li, Q. Liu, Y. Wang, and D. Wang, RSC Adv., 5, 87924 (2015).

    Article  CAS  Google Scholar 

  7. 7.

    H. Yi, P. Cheng, J. Chen, K. Liu, Q. Liu, M. Li, W. Zhong, W. Wang, Z. Lu, and D. Wang, Indus. Eng. Chem. Res. 57, 9269 (2018).

    Article  CAS  Google Scholar 

  8. 8.

    X. Wei, Z. Xia, S. C. Wong, and A. Baji, Int. J. Exp. Comp. Biomech., 1, 45 (2009).

    Article  Google Scholar 

  9. 9.

    C. Xiang and M. Frey, Materials, 9, 270 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    X. Zhu, W. Cui, X. Li, and Y. Jin, Biomacromolecules, 9, 1795 (2009).

    Article  CAS  Google Scholar 

  11. 11.

    S. Homaeigohar, J. Koll, E. T. Lilleodden, and M. Elbahri, Sep. Purif. Technol., 98, 456 (2012).

    Article  CAS  Google Scholar 

  12. 12.

    S. J. Lee, S. H. Oh, J. Liu, S. Soker, A. Atala, and J. J. Yoo, Biomaterials, 29, 1422 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    A. Abdal-Hay, K. H. Hussein, L. Casettari, K. A. Khalil, and A. S. Hamdy, Mater. Sci. Eng., 60, 143 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    S. C. Wong, A. Baji, and S. Leng, Polymer, 49, 4713 (2008).

    Article  CAS  Google Scholar 

  15. 15.

    L. Huang, J. T. Arena, S. S. Manickam, X. Jiang, B. G. Willis, and J. R. Mccutcheon, J. Membr. Sci., 460, 241 (2014).

    Article  CAS  Google Scholar 

  16. 16.

    Y. S. Li, Y. Zhang, N. R. Tao, and K. Lu, Scripta Mater., 59, 475 (2008).

    Article  CAS  Google Scholar 

  17. 17.

    C. L. Pai, M. C. Boyce, and G. C. Rutledge, Polymer, 52, 6126 (2011).

    Article  CAS  Google Scholar 

  18. 18.

    A. Baji, Y. W. Mai, and S. C. Wong, Mater. Sci. Eng. A, 528, 6565 (2011).

    Article  CAS  Google Scholar 

  19. 19.

    T. Stylianopoulos, C. A. Bashur, A. S. Goldstein, S. A. Guelcher, and V. H. Barocas, J. Mech. Behav. Biomed. Mater., 1, 326 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    C. L. Pai, M. C. Boyce, and G. C. Rutledge, Polymer, 52, 2295 (2011).

    Article  CAS  Google Scholar 

  21. 21.

    A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, and P. Chen, Compos. Sci. Technol., 70, 703 (2011).

    Article  CAS  Google Scholar 

  22. 22.

    Y. You, S. Wonlee, J. S. Lee, and W. H. Park, Mater. Lett., 60, 1331 (2006).

    Article  CAS  Google Scholar 

  23. 23.

    M. Kancheva, A. Toncheva, N. Manolova, and I. Rashkov, Express Polym. Lett., 9, 49 (2015).

    Article  CAS  Google Scholar 

  24. 24.

    L. Huang, S. S. Manickam, and J. R. Mcutcheon, J. Membr. Sci., 436, 213 (2013).

    Article  CAS  Google Scholar 

  25. 25.

    S. S. Sreedhara and N. R. Tata, J. Eng. Fibre Fabri., 8, 132 (2013).

    Google Scholar 

  26. 26.

    T. Yang, D. Wu, L. Lu, W. Zhou, and M. Zhang, Polym. Compos., 32, 1280 (2011).

    Article  CAS  Google Scholar 

  27. 27.

    R. Casasola, N. L. Thomas, A. Trybala, and S. Georgiadou, Polymer, 55, 4728 (2014).

    Article  CAS  Google Scholar 

  28. 28.

    S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, Polymer, 46, 3372 (2005).

    Article  CAS  Google Scholar 

  29. 29.

    H. J. Choi, S. B. Kim, S. H. Kim, and M. H. Lee, J. Air Waste Manage. Assoc., 64, 322 (2014).

    Article  CAS  Google Scholar 

  30. 30.

    C. J. Angammana and S. H. Jayaram, Part. Sci. Technol., 34, 72 (2016).

    Article  CAS  Google Scholar 

  31. 31.

    C. Ribeiro, V. Sencadas, C. M. Costa, J. L. Gomez Ribelles, and S. Lanceros-Mendez, Sci. Technol. Adv. Mater., 12, 1 (2011).

    Article  CAS  Google Scholar 

  32. 32.

    H. Tsuji, M. Nakano, M. Hashimoto, K. Takashima, S. Katsura, and A. Mizuno, Biomacromolecules, 7, 3316 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    S. Zargham, S. Bazgir, A. Tavakolia, A. S. Rashidi, and R. Damerchely, J. Eng. Fibre Fabri., 7, 42 (2012).

    CAS  Google Scholar 

  34. 34.

    O. Ero-Phillips, M. Jenkins, and A. Stamboulis, Polymers, 4, 1331 (2012).

    Article  CAS  Google Scholar 

  35. 35.

    M. Richard-Lacroix and C. Pellerin, Macromolecules, 46, 9473 (2013).

    Article  CAS  Google Scholar 

  36. 36.

    N. Amiraliyan, M. Nouri, and M. Haghihat Kish, Polym. Sci. Ser. A, 52, 407 (2010).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Selatile, M.K., Ray, S.S., Ojijo, V. et al. Correlations between Fibre Diameter, Physical Parameters, and the Mechanical Properties of Randomly Oriented Biobased Polylactide Nanofibres. Fibers Polym 20, 100–112 (2019). https://doi.org/10.1007/s12221-019-8262-z

Download citation

Keywords

  • Electrospinning parameters
  • Inter-fibre bonding
  • Mechanical properties