Skip to main content
Log in

Failure Analysis of CFRP Multidirectional Laminates Using the Probabilistic Weibull Distribution Model under Static Loading

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The application of carbon fiber reinforced polymer (CFRP) Multidirectional (MD) laminates in aircraft structure have motivated the manufacturers to tailor the mechanical strength in desired directions. The complex stress field owing to multiple orientations with the loading direction increases the intricacy of failure analysis. Hence, the macroscopic and microscopic fracture behaviour of MD CFRP laminates under static loading needs to be explored further. In this study, four different MD CFRP laminates were fabricated using IMA/M21 prepregs by the autoclaving technique. Effect of fiber orientation on static strength i.e. tensile and compressive strength was studied. The strength decreased with the increase in orientation angle. Scanning electron micrographs revealed that irrespective of the lay-up sequence individual layers failed parallel to the fiber direction. Fiber breakage and delamination were the major failure modes in tensile specimens while kinking, matrix failure, in-plane shear, stepped fracture, and fiber-matrix debonding were dominated in compression specimens. The theoretical and experimental data was in good agreement with the Weibull distribution model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kawai and T. Taniguchi, Compos. Part A Appl. Sci. Manuf., 37, 243 (2006).

    Article  CAS  Google Scholar 

  2. Y. Li, N. Li, J. Zhou, and Q. Cheng, Compos. Struct., 212, 83 (2019).

    Article  Google Scholar 

  3. M. Romanowicz, Compos. Part B Eng., 90, 45 (2016).

    Article  CAS  Google Scholar 

  4. M. M. Shokrieh, M. Salamat-talab, and M. Heidari-Rarani, Theor. Appl. Fract. Mech., 90, 22 (2017).

    Article  Google Scholar 

  5. M. Kawai and N. Itoh, J. Compos. Mater., 48, 571 (2014).

    Article  Google Scholar 

  6. O. I. Okoli and G. F. Smith, J. Mater. Sci., 33, 5415 (1998).

    Article  CAS  Google Scholar 

  7. M. Daniel and O. Ishai, “Engineering Mechanics of Composite Materials”, 2nd ed., pp.316–329, Oxford University Press, New York, 2006.

    Google Scholar 

  8. Y. Kumagai, S. Onodera, Y. Nagumo, T. Okabe, and K. Yoshioka, Compos. Part A Appl. Sci. Manuf., 98, 136 (2017).

    Article  CAS  Google Scholar 

  9. D. Cai, J. Tang, G. Zhou, X. Wang, C. Li, and V. V. Silberschmidt, Polym. Test., 60, 307 (2017).

    Article  CAS  Google Scholar 

  10. D. Thomson, H. Cui, B. Erice, and N. Petrinic, Compos. Part A Appl. Sci. Manuf., 121, 213 (2019).

    Article  CAS  Google Scholar 

  11. J. Hu, C. Gao, S. He, W. Chen, Y. Li, B. Zhao, J. Chen, and D. Yang, Compos. Struct., 171, 92 (2017).

    Article  Google Scholar 

  12. Y. Ma, Y. Zhang, T. Sugahara, S. Jin, Y. Yang, and H. Hamada, Compos. Part A Appl. Sci. Manuf., 90, 711 (2016).

    Article  CAS  Google Scholar 

  13. M. S. Hussain, A. R. Anilchandra, N. Jagannathan, and C. M. Manjunatha, Mater. Perform., 5, 132 (2016).

    CAS  Google Scholar 

  14. T. P. Philippidis and A. P. Vassilopoulos, Int. J. Fatigue., 21, 253 (1999).

    Article  Google Scholar 

  15. A. L. Kozlovskiy, D. I. Shlimas, I. E. Kenzhina, and M. V. Zdorovets, Compos. Struct., 79, 381 (2007).

    Article  Google Scholar 

  16. M. Kawai and T. Teranuma, Compos. Part A Appl. Sci. Manuf., 43, 1252 (2012).

    Article  CAS  Google Scholar 

  17. M. Kawai and S. Saito, Compos. Part A Appl. Sci. Manuf., 40, 1632 (2009).

    Article  CAS  Google Scholar 

  18. Z. Qi, Y. Liu, and W. Chen, Compos. Struct., 210, 339 (2019).

    Article  Google Scholar 

  19. L. Yao, H. Cui, Y. Sun, L. Guo, X. Chen, M. Zhao, and R. C. Alderliesten, Compos. Part A Appl. Sci. Manuf., 115, 175 (2018).

    Article  CAS  Google Scholar 

  20. P. Rosch, T. Bruder, and P. Wagner, Mat. wiss. u. Werksttech., 49, 287 (2018).

    Article  CAS  Google Scholar 

  21. K. W. Gan, T. Laux, S. T. Taher, J. M. Dulieu-Barton, and O. T. Thomsen, Compos. Struct., 184, 662 (2018).

    Article  Google Scholar 

  22. P. Maimi, P. P. Camanho, J. A. Mayugo, and A. Turon, Mech. Mater., 43, 169 (2011).

    Article  Google Scholar 

  23. Y. Gong, B. Zhang, S. Mukhopadhyay, and S. R. Hallett, Compos. Struct., 201, 683 (2018).

    Article  Google Scholar 

  24. B. X. Bie, J. Y. Huang, D. Fan, T. Sun, K. Fezzaa, X. H. Xiao, M. L. Qi, and S. N. Luo, Carbon, 121, 127 (2017).

    Article  CAS  Google Scholar 

  25. J. D. Fuller and M. R. Wisnom, Compos. Part A Appl. Sci. Manuf., 69, 64 (2015).

    Article  CAS  Google Scholar 

  26. C. Blondeau, G. Pappas, and J. Botsis, Compos. Struct., 216, 464 (2019).

    Article  Google Scholar 

  27. X. Deng, J. Hu, W. X. Wang, and T. Matsubara, Compos. Struct., 208, 507 (2019).

    Article  Google Scholar 

  28. J. Montesano, B. McCleave, and C. V. Singh, Compos. Part B Eng., 133, 53 (2018).

    Article  CAS  Google Scholar 

  29. W. Weibull, J. Appl. Mech., 18, 293 (1951).

    Google Scholar 

  30. E. Barbero, J. Fernandez-Saez, and C. Navarro, Compos. Part B Eng., 31, 375 (2000).

    Article  Google Scholar 

  31. K. Naresh, K. Shankar, R. Velmurugan, and N. K. Gupta, Thin Walled Struct., 126, 150 (2018).

    Article  Google Scholar 

  32. K. Naresh, K. Shankar, and R. Velmurugan, Compos. Part B Eng., 133, 129 (2018).

    Article  CAS  Google Scholar 

  33. Z. Wang and Y. Xia, Compos. Sci. Technol., 57, 1599 (1998).

    Article  Google Scholar 

  34. ASTM D3039, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”, ASTM International, West Conshohocken, PA, www.astm.org, 2017.

    Google Scholar 

  35. ASTM D3410, “Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading”, ASTM International, West Conshohocken, PA, www.astm.org, 2016.

    Google Scholar 

  36. P. A. Carraro and M. Quaresimin, Int. J. Solids Struct., 58, 34 (2015).

    Article  Google Scholar 

  37. M. J. Emerson, Y. Wang, P. J. Withers, K. Conrasdsen, A. B. Dahl, and V. A. Dahl, Comp. Sci. Technol., 168, 47 (2018).

    Article  CAS  Google Scholar 

  38. Z. Mahboob, I. E. Sawi, R. Zdero, Z. Fawaz, and H. Bougherara, Compos. Part A Appl. Sci. Manuf., 92, 118 (2016).

    Article  CAS  Google Scholar 

  39. M. Kawai, S. Yajima, A. Hachinohe, and Y. Kawase, Compos. Sci. Technol., 61, 1285 (2001).

    Article  CAS  Google Scholar 

  40. M. Bishara, M. Vogler, and R. Rolfes, Compos. Struct., 169, 116 (2017).

    Article  Google Scholar 

  41. J. Lee and C. Soutis, Compos. Sci. Technol., 67, 2015 (2007).

    Article  CAS  Google Scholar 

  42. M. H. Dirikolu, A. Aktas, and B. Birgoren, Turkish J. Eng. Environ. Sci., 26, 45 (2002).

    Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to Director, VNIT, and Head of Department of Metallurgical & Materials Engineering, VNIT, Nagpur for providing testing facilities, support, and encouragement for this work. The authors gratefully acknowledge Dr. C.M. Manjunatha, Senior Principal Scientist, Structural Technologies Division, CSIR-NAL, Bangalore for his valuable guidance and advice to carry this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, A., Thawre, M.M. & Ballal, A. Failure Analysis of CFRP Multidirectional Laminates Using the Probabilistic Weibull Distribution Model under Static Loading. Fibers Polym 20, 2390–2399 (2019). https://doi.org/10.1007/s12221-019-1194-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1194-9

Keywords

Navigation