Skip to main content

Acoustic and Thermal Properties of Polypropylene Carpets: Effect of Pile Length and Loop Density


Sound control in office and living environments is cruical for creating a peaceful and relaxing occupation for individuals. Improvement of sound absorption properties of textile materials used in architectural structures has become an issue of importance. The study here is focused on acoustic characterization of polypropylene carpets used in the indoor environments. Due to growing interest in mass, volume and cost efficient multifunctional materials, additionally thermal conductivity of the carpets have been studied. Polypropylene carpet samples were prepared with four different pile length and two different loop density parameters. It has been observed that loop density and pile length parameters affect thermal properties and sound absorption rates all frequency ranges. Anova analysis for sound absorption revealed that the combined effect of loop density and pile length parameters is evident in the mid-to-high frequency ranges.

This is a preview of subscription content, access via your institution.


  1. 1.

    E. Margaritis and J. Kang, Ecol. Indic., 72, 921 (2017).

    Article  Google Scholar 

  2. 2.

    P. Apparicio, J. Gelb, M. Carrier, M. È. Mathieu, and S. Kingham, J. Transp. Geogr., 70, 182 (2018).

    Article  Google Scholar 

  3. 3.

    P. Brereton and J. Patel, Acoust. Aust., 44, 55 (2016).

    Article  Google Scholar 

  4. 4.

    E. Brueck, Acoust. Aust., 44, 77 (2016).

    Article  Google Scholar 

  5. 5.

    D. Jurevicius, T. Evans, and M. Stead, Acoust. Aust., 44, 263 (2016).

    Article  Google Scholar 

  6. 6.

    N. Auger, M. Duplaix, M. B. Bertrand, E. Lo, and A. Smargiassi, Environ. Pollut., 239, 599 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    J. Pan, R. Paurobally, and X. Qiu, Acoust. Aust., 44, 45 (2016).

    Article  Google Scholar 

  8. 8.

    R. M. Sanz, A. V. N. Gisbert, J. E. C. Amorós, J. M. B. Morillas, F. P. García, and E. J. Sanchis, Acoust. Aust., 44, 149 (2016).

    Article  Google Scholar 

  9. 9.

    A. Putra, K. H. Or, M. Z. Selamat, M. J. M. Nor, M. H. Hassan, and I. Prasetiyo, Appl. Acoust., 136, 9 (2018).

    Article  Google Scholar 

  10. 10.

    X. L. Gai, T. Xing, X. H. Li, B. Zhang, Z. N. Cai, F. Wang, and B. Key, Appl. Acoust., 137, 98 (2018).

    Article  Google Scholar 

  11. 11.

    M. Kucuk and Y. Korkmaz, Fiber. Polym., 16, 941 (2015).

    Article  CAS  Google Scholar 

  12. 12.

    Y. Na, T. Agnhage, and G. Cho, Fiber. Polym., 13, 1348 (2012).

    Article  CAS  Google Scholar 

  13. 13.

    X. Tang, C. H. Jeong, and X. Yan, J. Acoust. Soc. Am., 144, EL100 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    L. Cao, Q. Fu, Y. Si, B. Ding, and J. Yu, Compos. Commun., 10, 25 (2018).

    Article  Google Scholar 

  15. 15.

    J. Wang, Q. Ao, J. Ma, X. Kang, H. Tang, and W. Song, Appl. Acoust., 145, 431 (2019).

    Article  Google Scholar 

  16. 16.

    T. Yang, X. Xiong, R. Mishra, J. Novák, and J. Militk, Text. Res. J., (2018).

  17. 17.

    A. Patnaik, M. Mvubu, S. Muniyasamy, A. Botha, and R. D. Anandjiwala, Energ. Buildings, 92, 161 (2015).

    Article  Google Scholar 

  18. 18.

    K. Ghorbani, H. Hasani, M. Zarrebini, and R. Saghafi, Alexandria Eng. J., 55, 907 (2016).

    Article  Google Scholar 

  19. 19.

    F. Asdrubali, F. D’Alessandro, and S. Schiavoni, Sustain. Mater. Technol., 4, 1 (2015).

    CAS  Google Scholar 

  20. 20.

    M. Küçük and Y. Korkmaz, Text. Res. J., 82, 2043 (2012).

    Article  CAS  Google Scholar 

  21. 21.

    P. V. Bansod, T. Mittal, and A. R. Mohanty, Acoust. Aust., 44, 457 (2016).

    Article  Google Scholar 

  22. 22.

    X. Liu, X. Yan, L. Li, and H. Zhang, J. Nat. Fibers, 12, 311 (2015).

    Article  CAS  Google Scholar 

  23. 23.

    C. W. Lou, T. T. Li, C. L. Huang, Y. H. Hsu, and J. H. Lin, J. Eng. Fiber. Fabr., 10, 29 (2015).

    CAS  Google Scholar 

  24. 24.

    S. Hassanzadeh, H. Hasani, and M. Zarrebini, J. Text. Inst., 105, 256 (2014).

    Article  CAS  Google Scholar 

  25. 25.

    M. K. Moghaddam, S. Safi, S. Hassanzadeh, and S. M. Mortazavi, J. Text. Inst., 107, 145 (2016).

    CAS  Google Scholar 

  26. 26.

    S. K. Chaudhuri in “Advances in Carpet Manufacture” (K. K. Goswami Ed.), 2nd ed., pp.18–34, Woodhead Publishing, 2017.

  27. 27.

    S. K. Gupta, K. K. Goswami, and A. Majumdar, J. Nat. Fibers, 12, 399 (2015).

    Article  Google Scholar 

  28. 28.

    S. Rwawiire, B. Tomkova, J. Militky, L. Hes, and B. M. Kale, Appl. Acoust., 116, 177 (2017).

    Article  Google Scholar 

  29. 29.

    G. M. Zakriya and G. Ramakrishnan, Energ. Buildings, 158, 1544 (2018).

    Article  Google Scholar 

  30. 30.

    A. Pereira, L. Godinho, D. Mateus, J. Ramis, and F. G. Branco, Appl. Acoust., 79, 92 (2014).

    Article  Google Scholar 

  31. 31.

    Y. Z. Shoshani and M. A. Wilding, Text. Res. J., 61, 736 (1991).

    Article  Google Scholar 

  32. 32.

    A. Elkhateeb, A. Adas, M. Attia, and Y. Balila, Appl. Acoust., 105, 143 (2016).

    Article  Google Scholar 

  33. 33.

    R. Nayak and R. Padhye in “Applications of Acoustic textiles in Automotive/Transportion” (J. P. Arenas Ed.), pp.143–163, Springer, 2016.

  34. 34.

    B. Gao, L. Zuo, and B. Zuo, Fiber. Polym., 17, 1090 (2016).

    Article  CAS  Google Scholar 

  35. 35.

    F. Shahani, P. Soltani, and M. Zarrebini, J. Eng. Fiber. Fabr., 9, 84 (2014).

    Google Scholar 

  36. 36.

    Z. Y. Lim, A. Putra, M. J. M. Nor, and M. Y. Yaakob, Appl. Acoust., 130, 107 (2018).

    Article  Google Scholar 

  37. 37.

    Y. Shen and G. Jiang, J. Text. Inst., 105, 392 (2014).

    Article  CAS  Google Scholar 

  38. 38.

    H. F. Xiang, D. Wang, H. C. Liu, N. Zhao, and J. Xu, Chinese J. Polym. Sci., 31, 521 (2013).

    Article  CAS  Google Scholar 

  39. 39.

    M. Küçük and Y. Korkmaz, J. Text. Inst., 108, 1398 (2017).

    Article  CAS  Google Scholar 

  40. 40.

    S. Zhang, Y. Li, and Z. Zheng, Compos. Commun., 10, 163 (2018).

    Article  Google Scholar 

  41. 41.

    R. Carvalho, M. Fernandes, and R. Fanguerio, Procedia Eng., 200, 252 (2017).

    Article  CAS  Google Scholar 

  42. 42.

    P. Chidambaram, R. Govind, and K. C. Venkataraman, AUTEX Res. J., 11, 102 (2011).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Merve Küçük.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Küçük, M., Korkmaz, Y. Acoustic and Thermal Properties of Polypropylene Carpets: Effect of Pile Length and Loop Density. Fibers Polym 20, 1519–1525 (2019).

Download citation


  • Polypropylene carpet
  • Loop density
  • Pile length
  • Sound absorption
  • Thermal insulation