Skip to main content
Log in

Effect of Nanosilica on the Mechanical and Thermal Properties of Carbon Fiber/Polycarbonate Laminates

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

An investigation of nanosilica (SiO2), influencing the mechanical and thermal attributes of carbon fiber (CF)/polycarbonate (PC) laminates, is described in this study. Polycarbonates with four different weight percentages of SiO2 (PC-SiO2, 0.1, 0.3, 0.6 and 1.0 wt%) were prepared using a melt-blending technique. The PC-SiO2 nanocomposites were then used to fabricate planar CF/PC laminates through a hot hydraulic press machine. The prepared laminates were characterized by a number of different techniques; namely, tensile tests, dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). The tensile test findings revealed that when 0.6 wt% of SiO2 was added to the laminate layers, the maximum tensile modulus and yield stress were achieved. The mechanical properties obtained by DMTA supported the tensile test results. It should be noted that the 0.6 wt% of SiO2 had the highest mechanical properties. The DMTA and DSC analyses were used to measure the glass transition temperatures (Tg) of laminates. We found that with the addition 0.6 wt% of SiO2 the Tg increased to approximately 1°C compared to 0 °C for the neat CF/PC laminate, meaning that by adding up 0.1 to 0.6 nanosilica to the polymer, the value Tg first increased and then decreased. To characterize the mass loss, the thermal degradation of polycarbonate influenced by nitrogen was investigated through TGA. According to our TGA results, the highest thermal stability was achieved by adding 0.6 wt% of SiO2 to the PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Z. Shen, S. Bateman, D. Y. Wu, P. McMahon, M. D. Olio, and J. Gotama, Compos. Sci. Technol., 69, 239 (2009).

    Article  CAS  Google Scholar 

  2. W. Albouy, B. Vieille, and L. Taleb, Compos. Part A-Appl., 67, 22 (2014).

    Article  CAS  Google Scholar 

  3. A. Margossian, S. Bel, and R. Hinterhoelzl, Compos. Part A-Appl., 77, 154 (2015).

    Article  CAS  Google Scholar 

  4. T. Yokozeki, Y. Iwahori, S. Ishiwata, and K. Enomoto, Compos. Part A-Appl., 38, 2121 (2007).

    Article  CAS  Google Scholar 

  5. B. Vieille and W. Albouy, Int. J. Fatigue, 80, 1 (2015).

    Article  CAS  Google Scholar 

  6. N. Oya and H. Hamada, Compos. Part A-Appl., 28, 823 (1997).

    Article  Google Scholar 

  7. F. Ning, W. Cong, J. Qiu, J. Wei, and S. Wang, Compos. Part B-Eng., 80, 369 (2015).

    Article  CAS  Google Scholar 

  8. G. Schinner, J. Brandt, and H. Richter, J. Thermoplast. Compos. Mater, 3, 239 (1996).

    Article  Google Scholar 

  9. F. Rezaeia, R. Yunus, and N. A. Ibrahim, Mater. Des., 30, 260 (2009).

    Article  CAS  Google Scholar 

  10. C. Martin-Barrera and P. I. Gonzalez-Chi, Polym. Test., 31, 1053 (2012).

    Article  CAS  Google Scholar 

  11. A. Yapici, N. Tarakcioglu, A. Akdem, and A. Avci, J. Thermoplast. Compos. Mater., 14, 146 (2001).

    Article  CAS  Google Scholar 

  12. M. Hou, K. Friedrich, and R. Scherer, Compos. Struct., 27, 157 (1994).

    Article  Google Scholar 

  13. A. Fereidoon, M. Ghorbanzadeh-Ahangari, S. Saedodin, and T. Macromol, Sci. Part B; Phys., 48, 25 (2009).

    CAS  Google Scholar 

  14. B. Ashrafi, A. M. Díez-Pascual, L. Johnson, M. Genest, S. Hind, Y. Martinez-Rubi, J. M. González-Domínguez, M. T. Martínez, B. Simard, M. A. Gómez-Fatou, and A. Johnston, Compos. Part A-Appl., 43, 1267 (2012).

    Article  CAS  Google Scholar 

  15. N. L. Batista, M. L. Costa, K. Iha, and E. C. Botelho, J. Thermoplast. Compos. Mater., 28, 265 (2015).

    Article  CAS  Google Scholar 

  16. M. M. Thawre, K. K. Verma, N. Jagannathan, D. R. Peshwe, R. K. Paretkar, and C. M. Manjunatha, Compos. Part B-Eng, 86, 120 (2016).

    Article  CAS  Google Scholar 

  17. Y. Rostamiyan and A. Ferasat, Damage. Mech., 26, 1 (2016).

    Google Scholar 

  18. Y. Rostamiyan, A. Fereidoon, A. G. Ghalebahman, A. H. Mashhadzadeh, and A. Salmankhani, Mater. Des., 65, 1236 (2015).

    Article  CAS  Google Scholar 

  19. M. Hemmati, A. Narimani, H. Shariatpanahi, A. Fereidoon, and M. G. Ahangari, Inter. J. Polym. Mater, 60, 384 (2011).

    Article  CAS  Google Scholar 

  20. Y. Rostamiyan and A. B. Fereidoon, Strength. Mater., 45, 619 (2013).

    Article  CAS  Google Scholar 

  21. M. H. Gabr, W. Okumura, H. Ueda, W. Kuriyama, K. Uzawa, and I. Kimpara, Compos. Part B-Eng., 69, 94 (2015).

    Article  CAS  Google Scholar 

  22. Y. Rostamiyan, A. Fereidoon, M. Rezaeiashtiyani, A. Hamed Mashhadzadeh, and A. Salmankhani, Mater. Des., 69, 96 (2014).

    Article  CAS  Google Scholar 

  23. Y. Rostamiyan and R. Azadi, Adv. Mech. Eng., 8, 1 (2016).

    Article  Google Scholar 

  24. A. S. Luyt, M. D. Dramićanin, Ž. Antić, and V. Djoković, Test., 28, 348 (2009).

    CAS  Google Scholar 

  25. S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, Polymer, 42, 879 (2001).

    Article  CAS  Google Scholar 

  26. H. Behniafar and S. Azadeh, Int. J. Polym. Mater., 64, 1 (2015).

    Article  CAS  Google Scholar 

  27. S. Sprenger, M. H. Kothmann, and V. Altstaedt, Compos. Sci. Technol., 105, 86 (2014).

    Article  CAS  Google Scholar 

  28. Y. T. Sung, C. K. Kum, H. S. Lee, N. S. Byon, H. G. Yoon, and W. N. Kim, Polymer, 46, 5656 (2005).

    Article  CAS  Google Scholar 

  29. K. N. E. Verghese, R. E. Jensen, J. J. Lesko, and T. C. Ward, Polymer, 42, 1633 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fathalian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathalian, M., Ghorbanzadeh Ahangari, M. & Fereidoon, A. Effect of Nanosilica on the Mechanical and Thermal Properties of Carbon Fiber/Polycarbonate Laminates. Fibers Polym 20, 1684–1689 (2019). https://doi.org/10.1007/s12221-019-1158-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1158-0

Keywords

Navigation