Skip to main content
Log in

Influence of Transport Properties of Laminated Membrane-fabric on Thermal Protective Performance Against Steam Hazard

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The breathable fabric and membrane application in protective clothing designed for protection against flame, radiation, hot liquid and steam are vital in thermal protective performance and thermal comfort. Four kinds of laminated membrane-fabrics were selected to investigate the influence of configuration and properties of the fabric on thermal protective performance under a pressurized steam hazard simulation. Surface morphology, water repellency, air permeability, water vapor permeability and other characteristics were evaluated to explore their impact on the mechanism of heat and moisture transfer in laminated fabric. It is found that the configuration critically affects the thermal protective performance. The thickness, mass and moisture regain of laminated fabric exhibit different levels of positive correlation with thermal protective performance of two configurations. Additionally, absorptive and porous membranes have different modes of water vapor transmission, while heat conduction and steam condensation in two kinds of membranes are both key influential factors in producing skin burn under steam hazard. Therefore, effective protection against steam hazard is achieved by decreasing the penetration and storage of steam within protective clothing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Keighley, J. Ind. Text., 15, 89 (1985).

    CAS  Google Scholar 

  2. G. Lomax, J. Ind. Text., 15, 40 (1985).

    CAS  Google Scholar 

  3. D. J. Gohlke and J. C. Tanner, J. Ind. Text., 6, 28 (1976).

    CAS  Google Scholar 

  4. W. Jeong and S. An, J. Mater. Set, 36, 4797 (2001).

    Article  CAS  Google Scholar 

  5. B. Pause, J. Ind. Text., 25, 311 (1996).

    CAS  Google Scholar 

  6. J. Ruckman, Int. J. Cloth. Sci. Tech., 9, 10 (1997).

    Article  Google Scholar 

  7. J. Ruckman, Int. J. Cloth. Sci. Tech., 9, 141 (1997).

    Article  Google Scholar 

  8. S. Lee and S. K. Obendorf, J. Text. I, 98, 87 (2007).

    Article  CAS  Google Scholar 

  9. D. Aldridge, U.S. Patent, 5640718 (1997).

    Google Scholar 

  10. W. Kirsner, Heating, Piping and Air Conditioning, 67, 36 (1995).

    Google Scholar 

  11. R. Sati, E. M. Crown, M. Ackerman, J. Gonzalez, and D. Dale, Int. J. Occup. Saf. Ergo., 14, 29 (2008).

    Article  Google Scholar 

  12. A. R. Moritz, F. C. Henriques, and R. Mclean, IEEE T. Dielect. El. In., 19, 763 (1945).

    Google Scholar 

  13. Y. Lu, G. Song, H. Zeng, L. Zhang, and J. Li, Text. Res. J., 84, 175 (2013).

    Google Scholar 

  14. S. Mandal, G. Song, and F. Gholamreza, J. Ind. Text., 46, 279 (2015).

    Article  Google Scholar 

  15. Y. Su and J. Li, Meas. Sci. Technol, 27, 1 (2016).

    Article  Google Scholar 

  16. R. Rossi, E. Indelicate, and W. Bolli, Int. J. Occup. Saf. Ergo., 10, 239 (2004).

    Article  Google Scholar 

  17. S. Mandal, G. Song, M. Ackerman, S. Paskaluk, and F. Gholamreza, Text. Res. J., 83, 1005 (2013).

    Article  CAS  Google Scholar 

  18. G. Murtaza, M. S. Thesis, University of Alberta, Alberta, 2012.

    Google Scholar 

  19. M. Ackerman, E. Crown, J. Dale, G. Murtaza, J. Batcheller, and J. Gonzalez, ASTM International, 2012.

    Google Scholar 

  20. G. Song, S. Mandal, and R. Rossi, “Thermal Protective Clothing for Firefighters”, Woodhead Publishing, 2016.

    Google Scholar 

  21. D. A. Hodson, G. Eason, and J. C. Barbenel, J. Biomech. Eng, 108, 183 (1986).

    Article  CAS  Google Scholar 

  22. M. P. Gashti, F. Alimohammadi, G. Song, and A. Kiumarsi, Current Microscopy Contributions to Advances in Science and Technology, 2, 1424 (2012).

    Google Scholar 

  23. L. Fengzhi, L. Yi, L. Yingxi, and L. Zhongxuan, Numer Heat. Tr B-Fund, 45, 249 (2004).

    Article  CAS  Google Scholar 

  24. Y. Su and J. Li, J. Ind. Text, 47, 853 (2016).

    Article  Google Scholar 

  25. C. Rogers, J. Meyer, V. Stannett, and M. Szwarc, Tappi, 39, 741 (1956).

    CAS  Google Scholar 

  26. Y. Li and Q. Y. Zhu, Text. Res. J., 73, 515 (2003).

    Article  CAS  Google Scholar 

  27. C. V. Le, N. G. Ly, and R. Postle, Int. J. Heat. Mass. Tran., 38, 81 (1995).

    Article  CAS  Google Scholar 

  28. P. C. Carman, “Flow of Gases Through Porous Media”, Academic Press, 1956.

    Google Scholar 

  29. C. V. Le, N. G. Ly, and R. Postle, Text. Res. J., 65, 203 (1995).

    Article  CAS  Google Scholar 

  30. Y. Ren and J. Ruckman, J. Ind. Text., 32, 165 (2003).

    Article  Google Scholar 

  31. K. Vafai and M. Sozen, Annu. Rev. Heat. Tran., 3, 145 (1990).

    Article  CAS  Google Scholar 

  32. U. Reischl and A. Stransky, Text. Res. J., 50, 643 (1980).

    Article  CAS  Google Scholar 

  33. Y. Su, J. He, and J. Li, Appl. Therm. Eng, 93, 1295 (2016).

    Article  Google Scholar 

  34. D. A. Torvi, Ph.D. Dissertation, University of Alberta, Alberta, 1997.

    Google Scholar 

  35. R. Agarwal, N. Saxena, K. B. Sharma, S. Thomas, and L. A. Pothan, Indian J. Pure. Ap. Phy, 44, 746 (2006).

    CAS  Google Scholar 

  36. M. W. Futschik and L. C. Witte, Asme-Publications-Htd, 271, 123 (1994).

    CAS  Google Scholar 

  37. T. L. Bergman, F. P. Incropera, and A. S. Lavine, “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, 2011.

    Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Shanghai Sailing Program, Open Fund of Shanghai Center for High Performance Fibers and Composites, Fundamental Research Funds for the Central Universities (Grant NO. 2232019G-08), and initial research funds for young teachers of Donghua University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guowen Song or Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Li, R., Yang, J. et al. Influence of Transport Properties of Laminated Membrane-fabric on Thermal Protective Performance Against Steam Hazard. Fibers Polym 20, 2433–2442 (2019). https://doi.org/10.1007/s12221-019-1155-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1155-3

Keywords

Navigation