Synthesis of Bioresorbable Poly(Lactic-co-Glycolic Acid)s Through Direct Polycondensation: An Economical Substitute for the Synthesis of Polyglactin via ROP of Lactide and Glycolide

Abstract

High molecular weight bioresorbable polyglactin was successfully synthesized by direct esterification of glycolic acid and lactic acid in diphenylether under vacuum. The reaction mixture was initially dehydrated at 120 °C, diphenylether and catalysts were added when the temperature was raised to 180 °C, meanwhile the reaction mixture was kept dehydrated azeotropically for several hours. Diphenylether was removed from reaction mixture using vacuum and white solid polyglactin was obtained after purification. The intrinsic viscosity of polyglactin was in a range of 0.6 to 1.10 dl/g. This synthesis process can be an economical alternative to the conventional synthesis of polyglactin.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. S. Nair and C. T. Laurencin, Prog. Polym. Sci., 32, 762 (2007).

    Article  CAS  Google Scholar 

  2. 2.

    D. Atti, S. Lakshmi, R. Langer, and C. Laurencin, Adv. Drug Deliv. Rev., 54, 933 (2002).

    Article  Google Scholar 

  3. 3.

    K. Burg in “Natural and Synthetic Biomedical Polymers”, 1st ed. (S. Kumbar, C. Laurencin, and M. Deng Eds.), pp.115–121, Elsevier Inc., 2014.

  4. 4.

    H. Ueda and Y. Tabata, Adv. Drug Deliv. Rev., 55, 501 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    M. Ayyoob, D. H. Lee, J. H. Kim, S. W. Nam, and Y. J. Kim, Fiber. Polym., 18, 407 (2017).

    Article  CAS  Google Scholar 

  6. 6.

    R. Suuronen, T. Pohjonen, J. Hietanen, and C. A. Lindqvist, J. Oral Maxillofac. Surg., 56, 604 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    P. A. Gunatillake, Eur. Cells Mater., 5, 1 (2003).

    Article  CAS  Google Scholar 

  8. 8.

    R. A. Miller, J. M Brady, and D. E. Cutright, J. Biomed. Mater. Res., 11, 711 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    R. A. Jain, Biomaterials, 21, 2475 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    J. C. Middleton and A. J. Tipton, Biomaterials, 21, 2335 (2000).

    Article  CAS  Google Scholar 

  11. 11.

    C. Versfelt and D. Wasserman, U.S. Patent, 3,839,297 (1971).

  12. 12.

    G. Reul, J. Am. J. Surg., 134, 297 (1977).

    Article  Google Scholar 

  13. 13.

    J. Conn, R. Oyasu, M. Welsh, and J. M. Beal, Am. J. Surg., 128, 19 (1974).

    Article  PubMed  Google Scholar 

  14. 14.

    W. Amass, A. Amass, and B. Tighe, Polym. Int., 47, 89 (1998).

    Article  CAS  Google Scholar 

  15. 15.

    A. U. Daniels, M. K. O. Chang, K. P. Andriano, and J. Heller, J. Appl. Biomater., 1, 57 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    K. Athanasiou, Biomaterials, 17, 93 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    D. W. Grijpma, A. J. Nijenhuis, and A. J. Pennings, Polymer (Guildf), 31, 2201 (1990).

    Article  CAS  Google Scholar 

  19. 19.

    X. S. Wu and N. Wang, J. Biomater. Sci. Polym. Ed., 12, 21 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    U. Edlund and A.-C. Albertsson, Adv. Drug Deliv. Rev., 55, 585 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    K. Avgoustakis in “Encyclopedia of Biomaterials and Biomedical Engineering”, 2nd ed. (G. E. Wnek and G. L. Bowlin Eds.), Vol. 3, pp.2259–2279, CRC Press, Taylor & Francis Group, Boca Raton, 2008.

  22. 22.

    Q. Gao, P. Lan, H. Shao, and X. Hu, Polym. J., 34, 786 (2002).

    Article  CAS  Google Scholar 

  23. 23.

    P. Lan, Y. Zhang, Q Gao, H. Shao, and X. Hu, J. Appl. Polym. Sci., 92, 2163 (2004).

    Article  CAS  Google Scholar 

  24. 24.

    Z. Wang, Y. Zhao, F. Wang, and J. Wang, J. Appl. Polym. Sci., 102, 577 (2005).

    Article  CAS  Google Scholar 

  25. 25.

    M. Gümüjderelioglu and G. Deniz, Turk J. Chem., 23, 153 (1999).

    Google Scholar 

  26. 26.

    S.-I. Moon, K. Deguchi, M. Miyamoto, and Y. Kimura, Polym. Int., 53, 254 (2004).

    Article  CAS  Google Scholar 

  27. 27.

    M. Ajioka and K. K. S. Enomoto, J. Environ. Polym. Degrad., 3, 225 (1995).

    Article  CAS  Google Scholar 

  28. 28.

    M. Ajioka, H. Suizu, C. Higuchi, and T. Kashima, Polym. Degrad. Stab., 59, 137 (1998).

    Article  CAS  Google Scholar 

  29. 29.

    J. R. Nero and S. K. Sikdar, J. Appl. Polym. Sci., 27, 4687 (1982).

    Article  CAS  Google Scholar 

  30. 30.

    P. I. P. Park and S. Jonnalagadda, J. Appl. Polym. Sci., 100, 1983 (2006).

    Article  CAS  Google Scholar 

  31. 31.

    E. Gautier, P. Fuertes, P. Cassagnau, J.-P. Pascault, and E. Fleury, J. Polym. Sci., Part A. Polym. Chem., 47, 1440 (2009).

    Article  CAS  Google Scholar 

  32. 32.

    R. Mohammadikhah and Mohammadi-Rovshandeh, J. Iran. Polym. J., 17, 691 (2008).

    CAS  Google Scholar 

  33. 33.

    F. Carrasco, P. Pages, J. Gâmez-Pérez, O. O. Santana, and M. L. Maspoch, Polym. Degrad. Stab., 95, 116 (2010).

    Article  CAS  Google Scholar 

  34. 34.

    Y. Fan, H. Nishida, Y. Shirai, Y. Tokiwa, and T. Endo, Polym. Degrad. Stab., 86, 197 (2004).

    Article  CAS  Google Scholar 

  35. 35.

    J. Palacios, C. Albano, G. Gonzalez, R. V. Castillo, A. Karam, and M. Covis, Polym. Eng. Sci., 53, 1414 (2013).

    Article  CAS  Google Scholar 

  36. 36.

    C. D’avila, C. Erbetta, R. J. Alves, J. M. Resende, R. Fernando De Souza Freitas, and R. Geraldo De Sousa, J. Biomater. Nanobiotechnol., 3, 208 (2010).

    Article  Google Scholar 

  37. 37.

    H. Montes de Oca and I. M. Ward, Polymer (Guildf), 47, 7070 (2006).

    Article  CAS  Google Scholar 

  38. 38.

    P. Taddei, P. Monti, and R. Simoni, J. Mater. Sci. Mater. Med., 13, 59 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    H. K. Makadia and S. J. Siegel, Polymers (Basel), 3, 1377 (2011).

    Article  CAS  Google Scholar 

  40. 40.

    H. Yin, R. Wang, H. Ge, X. Zhang, and Z. Zhu, J. Appl. Polym. Sci., 132, 41566 (2015).

    Google Scholar 

  41. 41.

    B. Min, S. H. Kim, S. Kwon, H. J. Kim, and W. G. Kim, Bull. Korean Chem. Soc., 21, 635 (2000).

    CAS  Google Scholar 

  42. 42.

    K. Schwarz and M. Epple, Chem. Phys, 200, 2221 (1999).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young Jun Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayyoob, M., Yang, X., Park, HJ. et al. Synthesis of Bioresorbable Poly(Lactic-co-Glycolic Acid)s Through Direct Polycondensation: An Economical Substitute for the Synthesis of Polyglactin via ROP of Lactide and Glycolide. Fibers Polym 20, 887–895 (2019). https://doi.org/10.1007/s12221-019-1143-7

Download citation

Keywords

  • Biodegradable
  • Bioresorbable
  • Copolycondensation
  • Polyglactin
  • Poly(lactic-co-glycolic) acid