Encapsulated Phase Change Material Embedded by Graphene Powders for Smart and Flexible Thermal Response


Flexible responsive materials, such as graphene embedded phase change material (PCM), can exhibit a smart response to the heating and cooling steps and be utilized for the thermal sensing applications. The electrical conductivity is varied during the phase transition due to volume change of the working material. However, the leakage is one of the serious problems and restricts the PCM from applications. Phase change material was encapsulated in the present work to prevent the leakage problem. Polyaniline (PANI) was selected as the supporting material to surround the pure phase change material and thus the fabricated PCM composite could sustain the shape under the phase transition process. Herein, the polyaniline encapsulated phase change material was produced and the graphene powder was added to increase the electrical property of the PCM composite. The graphene embedded PCM composite showed excellent electrical performance when the temperature was increased to the isothermal phase transition state. The pure PCM inside the microcapsule began to melt and the liquid state lead to the volume expansion of the PCM composite. Therefore, the reversible form stable phase transition was achieved and the electrical conductivity was increased as the distance between conductive graphene fillers was reduced with volume expansion of the PCM. This study suggests that the microencapsulated PCM composite should provide new applications for thermal sensing and flexible thermo-electric devices like smart photodetectors.

This is a preview of subscription content, log in to check access.


  1. 1.

    M. Arjmand, K. Chizari, B. Krause, P. Pötschke, and U. Sundararaj, Carbon, 98, 358 (2016).

    Article  CAS  Google Scholar 

  2. 2.

    S. Gong, Z. Zhu, and S. Meguid, Polymer, 56, 498 (2015).

    Article  CAS  Google Scholar 

  3. 3.

    T. Ma, H. L. Gao, H. P. Cong, H. B. Yao, L. Wu, Z. Y. Yu, S. M. Chen, and S. H. Yu, Adv. Mater., 30, 1706435 (2018).

    Article  CAS  Google Scholar 

  4. 4.

    Y. Wang, H. Mi, Q. Zheng, Z. Ma, and S. Gong, ACS Appl. Mater. Interfaces, 7, 2641 (2015).

    Article  CAS  Google Scholar 

  5. 5.

    M. M. Pour, A. Lashkov, A. Radocea, X. Liu, T. Sun, A. Lipatov, R. A. Korlacki, M. Shekhirev, N. R. Aluru, and J. W. Lyding, Nat. Commun., 8, 820 (2017).

    Article  CAS  Google Scholar 

  6. 6.

    X. Xia, Y. Wang, Z. Zhong, and G. J. Weng, Carbon, 111, 221 (2017).

    Article  CAS  Google Scholar 

  7. 7.

    N. Yousefi, M. M. Gudarzi, Q. Zheng, S. H. Aboutalebi, F. Sharif, and J.-K. Kim, J. Mater. Chem., 22, 12709 (2012).

    Article  CAS  Google Scholar 

  8. 8.

    H. Pang, T. Chen, G. Zhang, B. Zeng, and Z.-M. Li, Mater. Lett., 64, 2226 (2010).

    Article  CAS  Google Scholar 

  9. 9.

    G. Ruschau, S. Yoshikawa, and R. Newnham, J. Appl. Phys., 72, 953 (1992).

    Article  Google Scholar 

  10. 10.

    J.-L. Zeng, J. Gan, F.-R. Zhu, S.-B. Yu, Z.-L. Xiao, W.-P. Yan, L. Zhu, Z.-Q. Liu, L.-X. Sun, and Z. Cao, Solar Energy Materials and Solar Cells, 127, 122 (2014).

    Article  CAS  Google Scholar 

  11. 11.

    P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, J. Power Sources, 248, 37 (2014).

    Article  CAS  Google Scholar 

  12. 12.

    H. Kim, Y. Miura, and C. W. Macosko, Chem. Mater., 22, 3441 (2010).

    Article  CAS  Google Scholar 

  13. 13.

    A. K. Geim and K. S. Novoselov in “Nanoscience and Technology: A Collection of Reviews from Nature Journals”, p.11, World Scientific, 2010.

    Google Scholar 

  14. 14.

    Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).

    Article  CAS  Google Scholar 

  15. 15.

    A. Sari, Energy Convers. Manage., 45, 2033 (2004).

    Article  CAS  Google Scholar 

  16. 16.

    M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, Energy Convers. Manage., 45, 1597 (2004).

    Article  CAS  Google Scholar 

  17. 17.

    M. Mehrali, S. T. Latibari, M. Mehrali, T. M. I. Mahlia, H. S. C. Metselaar, M. S. Naghavi, E. Sadeghinezhad, and A. R. Akhiani, Appl. Thermal Eng., 61, 633 (2013).

    Article  CAS  Google Scholar 

  18. 18.

    S. Harish, D. Orejon, Y. Takata, and M. Kohno, Appl. Thermal Eng., 80, 205 (2015).

    Article  CAS  Google Scholar 

  19. 19.

    T. M. Buckley, “Flexible Composite Material with Phase Change Thermal Storage”, Google Patents, 1999.

    Google Scholar 

  20. 20.

    E. Oró, A. De Gracia, A. Castell, M. Farid, and L. Cabeza, Applied Energy, 99, 513 (2012).

    Article  CAS  Google Scholar 

  21. 21.

    D. Zhou, C.-Y. Zhao, and Y. Tian, Applied Energy, 92, 593 (2012).

    Article  CAS  Google Scholar 

  22. 22.

    B. Xu and Z. Li, Applied Energy, 105, 229 (2013).

    Article  CAS  Google Scholar 

  23. 23.

    Y. Fang, H. Kang, W. Wang, H. Liu, and X. Gao, Energy Convers. Manage., 51, 2757 (2010).

    Article  CAS  Google Scholar 

  24. 24.

    N. Zhang, Y. Yuan, Y. Yuan, T. Li, and X. Cao, Energy and Buildings, 82, 505 (2014).

    Article  Google Scholar 

  25. 25.

    C. Chen, L. Wang, and Y. Huang, Solar Energy Materials and Solar Cells, 92, 1382 (2008).

    Article  CAS  Google Scholar 

  26. 26.

    K. Chen, X. Yu, C. Tian, and J. Wang, Energy Convers. Manage., 77, 13 (2014).

    Article  CAS  Google Scholar 

  27. 27.

    J. Li, P. Xue, W. Ding, J. Han, and G. Sun, Solar Energy Materials and Solar Cells, 93, 1761 (2009).

    Article  CAS  Google Scholar 

  28. 28.

    A. Sari, C. Alkan, A. Karaipekli, and A. Önal, Energy Convers. Manage., 49, 373 (2008).

    Article  CAS  Google Scholar 

  29. 29.

    G. Leng, G. Qiao, Z. Jiang, G. Xu, Y. Qin, C. Chang, and Y. Ding, Applied Energy, 217, 212 (2018).

    Article  CAS  Google Scholar 

  30. 30.

    K. Chi, Z. Zhang, J. Xi, Y. Huang, F. Xiao, S. Wang, and Y. Liu, ACS Appl. Mater. Interfaces, 6, 16312 (2014).

    Article  CAS  Google Scholar 

  31. 31.

    M. Silakhori, M. S. Naghavi, H. S. C. Metselaar, T. M. I. Mahlia, H. Fauzi, and M. Mehrali, Materials, 6, 1608 (2013).

    Article  CAS  Google Scholar 

  32. 32.

    D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano, 4, 4806 (2010).

    Article  CAS  Google Scholar 

  33. 33.

    H. Xia and Q. Wang, Chem. Mater., 14, 2158 (2002).

    Article  CAS  Google Scholar 

  34. 34.

    E. Zelikman, M. Narkis, A. Siegmann, L. Valentini, and J. Kenny, Polym. Eng. Sci., 48, 1872 (2008).

    Article  CAS  Google Scholar 

  35. 35.

    J. Wu and D. McLachlan, Phys. Rev. B, 56, 1236 (1997).

    Article  Google Scholar 

  36. 36.

    E. Ancona and R. Y. Kezerashvili, Acta Astronautica, 140, 565 (2017).

    Article  CAS  Google Scholar 

  37. 37.

    J. Stejskal and R. Gilbert, Pure Appl. Chem., 74, 857 (2002).

    Article  Google Scholar 

  38. 38.

    N. K. Jangid, N. P. S. Chauhan, and P. B. Punjabi, J. Macromol. Sci., Part A, 52, 95 (2015).

    Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Jae Ryoun Youn or Young Seok Song.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Youn, J.R. & Song, Y.S. Encapsulated Phase Change Material Embedded by Graphene Powders for Smart and Flexible Thermal Response. Fibers Polym 20, 545–554 (2019). https://doi.org/10.1007/s12221-019-1067-2

Download citation


  • Phase change material
  • Electrical conductivity
  • Electrical conductivity
  • Encapsulation
  • Graphene filler