Fibers and Polymers

, Volume 20, Issue 3, pp 545–554 | Cite as

Encapsulated Phase Change Material Embedded by Graphene Powders for Smart and Flexible Thermal Response

  • Chengbin Yu
  • Jae Ryoun YounEmail author
  • Young Seok SongEmail author


Flexible responsive materials, such as graphene embedded phase change material (PCM), can exhibit a smart response to the heating and cooling steps and be utilized for the thermal sensing applications. The electrical conductivity is varied during the phase transition due to volume change of the working material. However, the leakage is one of the serious problems and restricts the PCM from applications. Phase change material was encapsulated in the present work to prevent the leakage problem. Polyaniline (PANI) was selected as the supporting material to surround the pure phase change material and thus the fabricated PCM composite could sustain the shape under the phase transition process. Herein, the polyaniline encapsulated phase change material was produced and the graphene powder was added to increase the electrical property of the PCM composite. The graphene embedded PCM composite showed excellent electrical performance when the temperature was increased to the isothermal phase transition state. The pure PCM inside the microcapsule began to melt and the liquid state lead to the volume expansion of the PCM composite. Therefore, the reversible form stable phase transition was achieved and the electrical conductivity was increased as the distance between conductive graphene fillers was reduced with volume expansion of the PCM. This study suggests that the microencapsulated PCM composite should provide new applications for thermal sensing and flexible thermo-electric devices like smart photodetectors.


Phase change material Electrical conductivity Electrical conductivity Encapsulation Graphene filler 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Arjmand, K. Chizari, B. Krause, P. Pötschke, and U. Sundararaj, Carbon, 98, 358 (2016).CrossRefGoogle Scholar
  2. 2.
    S. Gong, Z. Zhu, and S. Meguid, Polymer, 56, 498 (2015).CrossRefGoogle Scholar
  3. 3.
    T. Ma, H. L. Gao, H. P. Cong, H. B. Yao, L. Wu, Z. Y. Yu, S. M. Chen, and S. H. Yu, Adv. Mater., 30, 1706435 (2018).CrossRefGoogle Scholar
  4. 4.
    Y. Wang, H. Mi, Q. Zheng, Z. Ma, and S. Gong, ACS Appl. Mater. Interfaces, 7, 2641 (2015).CrossRefGoogle Scholar
  5. 5.
    M. M. Pour, A. Lashkov, A. Radocea, X. Liu, T. Sun, A. Lipatov, R. A. Korlacki, M. Shekhirev, N. R. Aluru, and J. W. Lyding, Nat. Commun., 8, 820 (2017).CrossRefGoogle Scholar
  6. 6.
    X. Xia, Y. Wang, Z. Zhong, and G. J. Weng, Carbon, 111, 221 (2017).CrossRefGoogle Scholar
  7. 7.
    N. Yousefi, M. M. Gudarzi, Q. Zheng, S. H. Aboutalebi, F. Sharif, and J.-K. Kim, J. Mater. Chem., 22, 12709 (2012).CrossRefGoogle Scholar
  8. 8.
    H. Pang, T. Chen, G. Zhang, B. Zeng, and Z.-M. Li, Mater. Lett., 64, 2226 (2010).CrossRefGoogle Scholar
  9. 9.
    G. Ruschau, S. Yoshikawa, and R. Newnham, J. Appl. Phys., 72, 953 (1992).CrossRefGoogle Scholar
  10. 10.
    J.-L. Zeng, J. Gan, F.-R. Zhu, S.-B. Yu, Z.-L. Xiao, W.-P. Yan, L. Zhu, Z.-Q. Liu, L.-X. Sun, and Z. Cao, Solar Energy Materials and Solar Cells, 127, 122 (2014).CrossRefGoogle Scholar
  11. 11.
    P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, J. Power Sources, 248, 37 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Kim, Y. Miura, and C. W. Macosko, Chem. Mater., 22, 3441 (2010).CrossRefGoogle Scholar
  13. 13.
    A. K. Geim and K. S. Novoselov in “Nanoscience and Technology: A Collection of Reviews from Nature Journals”, p.11, World Scientific, 2010.Google Scholar
  14. 14.
    Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Sari, Energy Convers. Manage., 45, 2033 (2004).CrossRefGoogle Scholar
  16. 16.
    M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, Energy Convers. Manage., 45, 1597 (2004).CrossRefGoogle Scholar
  17. 17.
    M. Mehrali, S. T. Latibari, M. Mehrali, T. M. I. Mahlia, H. S. C. Metselaar, M. S. Naghavi, E. Sadeghinezhad, and A. R. Akhiani, Appl. Thermal Eng., 61, 633 (2013).CrossRefGoogle Scholar
  18. 18.
    S. Harish, D. Orejon, Y. Takata, and M. Kohno, Appl. Thermal Eng., 80, 205 (2015).CrossRefGoogle Scholar
  19. 19.
    T. M. Buckley, “Flexible Composite Material with Phase Change Thermal Storage”, Google Patents, 1999.Google Scholar
  20. 20.
    E. Oró, A. De Gracia, A. Castell, M. Farid, and L. Cabeza, Applied Energy, 99, 513 (2012).CrossRefGoogle Scholar
  21. 21.
    D. Zhou, C.-Y. Zhao, and Y. Tian, Applied Energy, 92, 593 (2012).CrossRefGoogle Scholar
  22. 22.
    B. Xu and Z. Li, Applied Energy, 105, 229 (2013).CrossRefGoogle Scholar
  23. 23.
    Y. Fang, H. Kang, W. Wang, H. Liu, and X. Gao, Energy Convers. Manage., 51, 2757 (2010).CrossRefGoogle Scholar
  24. 24.
    N. Zhang, Y. Yuan, Y. Yuan, T. Li, and X. Cao, Energy and Buildings, 82, 505 (2014).CrossRefGoogle Scholar
  25. 25.
    C. Chen, L. Wang, and Y. Huang, Solar Energy Materials and Solar Cells, 92, 1382 (2008).CrossRefGoogle Scholar
  26. 26.
    K. Chen, X. Yu, C. Tian, and J. Wang, Energy Convers. Manage., 77, 13 (2014).CrossRefGoogle Scholar
  27. 27.
    J. Li, P. Xue, W. Ding, J. Han, and G. Sun, Solar Energy Materials and Solar Cells, 93, 1761 (2009).CrossRefGoogle Scholar
  28. 28.
    A. Sari, C. Alkan, A. Karaipekli, and A. Önal, Energy Convers. Manage., 49, 373 (2008).CrossRefGoogle Scholar
  29. 29.
    G. Leng, G. Qiao, Z. Jiang, G. Xu, Y. Qin, C. Chang, and Y. Ding, Applied Energy, 217, 212 (2018).CrossRefGoogle Scholar
  30. 30.
    K. Chi, Z. Zhang, J. Xi, Y. Huang, F. Xiao, S. Wang, and Y. Liu, ACS Appl. Mater. Interfaces, 6, 16312 (2014).CrossRefGoogle Scholar
  31. 31.
    M. Silakhori, M. S. Naghavi, H. S. C. Metselaar, T. M. I. Mahlia, H. Fauzi, and M. Mehrali, Materials, 6, 1608 (2013).CrossRefGoogle Scholar
  32. 32.
    D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano, 4, 4806 (2010).CrossRefGoogle Scholar
  33. 33.
    H. Xia and Q. Wang, Chem. Mater., 14, 2158 (2002).CrossRefGoogle Scholar
  34. 34.
    E. Zelikman, M. Narkis, A. Siegmann, L. Valentini, and J. Kenny, Polym. Eng. Sci., 48, 1872 (2008).CrossRefGoogle Scholar
  35. 35.
    J. Wu and D. McLachlan, Phys. Rev. B, 56, 1236 (1997).CrossRefGoogle Scholar
  36. 36.
    E. Ancona and R. Y. Kezerashvili, Acta Astronautica, 140, 565 (2017).CrossRefGoogle Scholar
  37. 37.
    J. Stejskal and R. Gilbert, Pure Appl. Chem., 74, 857 (2002).CrossRefGoogle Scholar
  38. 38.
    N. K. Jangid, N. P. S. Chauhan, and P. B. Punjabi, J. Macromol. Sci., Part A, 52, 95 (2015).Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Research Institute of Advanced Materials (RIAM), Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Fiber System EngineeringDankook UniversityYonginKorea

Personalised recommendations