Skip to main content

Color Performance, Durability and Handle of Inkjet-Printed and UV-Cured Photochromic Textiles for Multi-Colored Applications

Abstract

The development and design of novel functional and smart textile materials such as textile sensors and multicolored systems based on photochromic dyes necessitate controls of color intensities, switching speeds, and material durability. Precise control and synchronization of dye kinetics are important for multi-colored photochromic applications especially. However, durability towards abrasion and washing should not be compromised on if we aim to design reliable future textile products. In this study, two different commercial photochromic dyes — a naphthopyran and a spirooxazine-based dye — have been applied on PET fabric by inkjet printing and UV-LED curing. The photochromic textiles’ color behavior, fastness to abrasion and washing, and handle are evaluated using spectrophotometry, scanning electron microscopy, and Kawabata evaluation system. Despite a decrease in color performance after washing, the photochromic inkjet print is effective and barely influences the textile structure. Reduced rigidity of the host matrix promoted higher color yields and faster dye kinetics, but also improved durability towards abrasion and washing. In order to synchronize kinetics of the different dye types for multi-colored applications, distinct curing conditions are preferable, which, however, result in varying print durability. In the design of multi-colored photochromic textiles, dye kinetics, and durability have to be balanced.

References

  1. 1.

    C. Lang-Koetz, N. Pastewski, and H. Rohn, Chem. Eng. Technol., 33, 559 (2010).

    CAS  Google Scholar 

  2. 2.

    M. Aldib, Color. Technol., 131, 172 (2015).

    Article  CAS  Google Scholar 

  3. 3.

    R. Fu, J. Shi, E. Forsythe, and M. Srour, Opt. Eng., 55, 124105 (2016).

    Article  Google Scholar 

  4. 4.

    A. F. Little and R. M. Christie, Color. Technol., 127, 275 (2011).

    Article  CAS  Google Scholar 

  5. 5.

    M. Viková, “Photochromic Textiles”, Heriot-Watt University, Edinburgh, 2011.

    Google Scholar 

  6. 6.

    J. C. Crano and R. J. Guglielmetti, “Organic Photochromic and Thermochromic Compounds”, Springer, New York, 2006.

    Google Scholar 

  7. 7.

    R. Pardo, M. Zayat, and D. Levy, J. Sol-Gel Sci. Technol., 63, 400 (2012).

    Article  CAS  Google Scholar 

  8. 8.

    S. Seipel, J. Yu, A. P. Periyasamy, M. Viková M. Vik, and V. A. Nierstrasz, RSC Adv., 8, 28395 (2018).

    Article  CAS  Google Scholar 

  9. 9.

    F. Ercole, N. Malic, S. Harrisson, T. P. Davis, and R. A. Evans, Macromolecules, 43, 249 (2010).

    Article  CAS  Google Scholar 

  10. 10.

    N. Malic, I. J. Dagley, and R. A. Evans, Dyes Pigment., 97, 162 (2013).

    Article  CAS  Google Scholar 

  11. 11.

    N. Malic, J. A. Campbell, and R. A. Evans, Macromolecules, 41, 1206 (2008).

    Article  CAS  Google Scholar 

  12. 12.

    G. Such, R. A. Evans, L. H. Yee, and T. P. Davis, J. Macromol. Sci., Polym. Rev., 43, 547 (2003).

    Article  CAS  Google Scholar 

  13. 13.

    R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, Nat. Mater., 4, 249 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    F. Ercole, T. P. Davis, and R. A. Evans, Macromolecules, 42, 1500 (2009).

    Article  CAS  Google Scholar 

  15. 15.

    K. Mutoh, Y. Kobayashi, and J. Abe, Dyes Pigments, 137, 307 (2017).

    Article  CAS  Google Scholar 

  16. 16.

    J. H. Kim, S. Y. Ban, Q. Zhang, G. W. Kim, M. J. Cho, and D. H. Choi, Mol. Cryst. Liq. Cryst., 445, 307/[597] (2006).

    CAS  Google Scholar 

  17. 17.

    M. Parhizkar, Y. Zhao, Z. Xu, A. Gestos, Z. Xie, Z. Liu, and T. Lin, Fiber. Polym., 16, 2318 (2015).

    Article  CAS  Google Scholar 

  18. 18.

    M. Vik and M. Viková, “A Method and Device for Fatigue Testing of Photochromic, Fluorescent or Phosphorescent Dyes”, Technicka Univerzita V Liberci, 2016.

  19. 19.

    M. Viková and M. Vik, Adv. Chem. Eng. Sci., 1, 224 (2011).

    Article  CAS  Google Scholar 

  20. 20.

    A. Ranjkesh, M.-K. Park, H. D. Park, J.-S. Park, J.-C. Choi, S.-H. Kim, and H.-R. Kim, Sensors, 16, 38 (2016).

    Article  CAS  Google Scholar 

  21. 21.

    M. Larkowska, M. Wuebbenhorst, and S. Kucharski, Int. J. Polym. Sci., 2011, 6 (2011).

    Article  CAS  Google Scholar 

  22. 22.

    S. M. R. Billah, R. M. Christie, and R. Shamey, Color. Technol., 124, 223 (2008).

    Article  CAS  Google Scholar 

  23. 23.

    M. Natali and S. Giordani, Chem. Soc. Rev., 41, 4010 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    H. Xia, K. Xie, and G. Zou, Molecules, 22, 2236 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  25. 25.

    J. Zhou, Y. Li, Y. Tang, F. Zhao, X. Song, and E. Li, J. Photochem. Photobiol. A: Chem., 90, 117 (1995).

    Article  CAS  Google Scholar 

  26. 26.

    G. K. Such, R. A. Evans, and T. P. Davis, Macromolecules, 37, 9664 (2004).

    Article  CAS  Google Scholar 

  27. 27.

    X. Zhao, G. Wang, and K. Zhang, J. Appl. Polym. Sci., 124, 4157 (2011).

    Article  CAS  Google Scholar 

  28. 28.

    M. Kert and M. Gorjanc, Color. Technol., 133, 491 (2017).

    Article  CAS  Google Scholar 

  29. 29.

    A. P. Periyasamy, M. Vikova, and M. Vik, Text. Prog., 49, 53 (2017).

    Article  Google Scholar 

  30. 30.

    M. B. V. Shukla, D. K. Singh, and R. Shukla, Pigm. Resin Technol., 33, 272 (2004).

    Article  CAS  Google Scholar 

  31. 31.

    O. A. Hakeim, A. A. Arafa, M. K. Zahran, and L. A. W. Abdou, Colloids Surf. Physicochem. Eng. Aspects, 447, 172 (2014).

    Article  CAS  Google Scholar 

  32. 32.

    M. N. Karim, S. Afroj, M. Rigout, S. G. Yeates, and C. Carr, J. Mater. Sci., 50, 4576 (2015).

    Article  CAS  Google Scholar 

  33. 33.

    Y. Guan, B. Tawiah, L. Zhang, C. Du, and S. Fu, Colloids Surf. Physicochem. Eng. Aspects, 462, 90 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from Borås stad, TEKO (The Swedish Textile and Clothing Industries Association), Myfab and Sparbanksstiftelsen Sjuhärad for enabling this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sina Seipel.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seipel, S., Yu, J., Viková, M. et al. Color Performance, Durability and Handle of Inkjet-Printed and UV-Cured Photochromic Textiles for Multi-Colored Applications. Fibers Polym 20, 1424–1435 (2019). https://doi.org/10.1007/s12221-019-1039-6

Download citation

Keywords

  • Inkjet printing
  • UV curing
  • Textile sensor
  • Photochromic
  • Durability