Skip to main content
Log in

Cotton Dyeing and Antibacterial Finishing Using Agricultural Waste by an Eco-friendly Process Optimized by Response Surface Methodology

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, Berberis vulgaris L. wood as an agricultural waste was used for dyeing and functional finishing of cotton. To facilitate the attachment of natural dye, citric acid was used to create carboxylic acid functional groups on cotton fibers. The process of crosslinking of cotton fabric with citric acid was optimized in order to obtain the maximum dyeability with the cationic natural dye. The effects of three important factors including citric acid concentration, sodium hypophosphite concentration and curing temperature on the color strength of the dyed samples with woods of barberry tree were analyzed by response surface methodology and the optimum conditions for obtaining the highest color strength was obtained. The crosslinking of citric acid on cotton fibers was confirmed by FTIR spectroscopy. The dyed sample prepared under the optimum conditions of crosslinking showed good wash and light fastness properties besides very good antibacterial activity against gram-negative and gram-positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. A. Andrews, Text. Chem. Color., 22, 63 (1990).

    CAS  Google Scholar 

  2. W. Yao, B. Wang, T. Ye, and Y. Yang, Ind. Eng. Chem. Res., 52, 16118 (2013).

    Article  CAS  Google Scholar 

  3. P. Tang, B. Ji, and G. Sun, Carbohydr. Polym., 147, 139 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. V. A. Dehabadi, H.–J. Buschmann, and J. S. Gutmann, Text. Res. J., 83, 1974 (2013).

    Article  CAS  Google Scholar 

  5. Y.–L. Lam, C.–W. Kan, and C.–W. M. Yuen, Text. Prog., 44, 175 (2012).

    Article  Google Scholar 

  6. C. Q. Yang, X. Wang, and I.–S. Kang, Text. Res. J., 67, 334 (1997).

    Article  CAS  Google Scholar 

  7. L. Yun and C. Q. Yang, Text. Res. J., 69, 685 (1999).

    Article  Google Scholar 

  8. G. Xiaohong and C. Q. Yang, Text. Res. J., 70, 64 (2000).

    Article  Google Scholar 

  9. C.–E. Zhou, C.–W. Kan, C.–W. M. Yuen, J. P. Matinlinna, J. K.–H. Tsoi, and Q. Zhang, Text. Res. J., 86, 2202 (2016).

    Article  CAS  Google Scholar 

  10. T. Gülümser, Ind. Text., 68, 275 (2017).

    Article  Google Scholar 

  11. A. Haji, H. Barani, and S. S. Qavamnia, Micro Nano Lett., 8, 315 (2013).

    Article  CAS  Google Scholar 

  12. I. Oleksiewicz, R. Koźmínska, and A. Moscicki, Ind. Text., 67, 174 (2016).

    CAS  Google Scholar 

  13. A. Ali, N. H. A. Nguyen, V. Baheti, M. Ashraf, J. Militky, T. Mansoor, M. T. Noman, and S. Ahmad, J. Text. Inst., 109, 620 (2018).

    Article  CAS  Google Scholar 

  14. S. Bischof, S. Flincec Grgac, D. Katovic, and D. Brlek Gorski, AATCC Rev., 9, 37 (2009).

    Google Scholar 

  15. S. Bischof Vukušić, S. Flinčec Grgac, A. Budimir, and S. Kalenić, Croat. Med. J., 52, 68 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. A. Budimir, S. Bischof Vukusic, and S. Grgac Flincec, Cellulose, 19, 289 (2012).

    Article  CAS  Google Scholar 

  17. S. Adeel, M. Zuber, Fazal–ur Rehman, and K. M. Zia, Environ. Sci. Pollut. Res., 25, 11100 (2018).

    Article  CAS  Google Scholar 

  18. F. Rehman, S. Adeel, R. Hanif, M. Muneer, K. M. Zia, M. Zuber, M. A. Jamal, and M. K. Khosa, J. Nat. Fibers, 14, 63 (2017).

    Article  CAS  Google Scholar 

  19. A. Haji, Cellul. Chem. Technol., 51, 975 (2017).

    CAS  Google Scholar 

  20. S. Adeel, T. Gulzar, M. Azeem, R. Fazal ur, M. Saeed, I. Hanif, and N. Iqbal, Radiat. Phys. Chem., 130, 35 (2017).

    Article  CAS  Google Scholar 

  21. T. Gulzar, S. Adeel, I. Hanif, F. Rehman, R. Hanif, M. Zuber, and N. Akhtar, J. Nat. Fibers, 12, 494 (2015).

    Article  CAS  Google Scholar 

  22. M. Ben Ticha, W. Haddar, N. Meksi, A. Guesmi, and M. F. Mhenni, Carbohydr. Polym., 154, 287 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. N. Baaka, M. Ben Ticha, W. Haddar, M. T. P. Amorim, and M. F. Mhenni, Fiber. Polym., 19, 307 (2018).

    Article  CAS  Google Scholar 

  24. K. H. Prabhu, M. D. Teli, and N. Waghmare, Fiber. Polym., 12, 753 (2011).

    Article  CAS  Google Scholar 

  25. Ö. E. İşmal, Fiber. Polym., 18, 773 (2017).

    Article  CAS  Google Scholar 

  26. C.–W. Kan, C. K. Y. Lo, and W. S. Man, Color. Technol., 132, 4 (2016).

    Article  CAS  Google Scholar 

  27. J.–Y. Kang, J. Deivasigamani, and M. Sarmadi, AATCC Rev., 4, 28 (2004).

    Google Scholar 

  28. A. Haji, A. Mousavi Shoushtari, and M. Mirafshar, Color. Technol., 130, 37 (2014).

    Article  CAS  Google Scholar 

  29. A. Haji, Cellul. Chem. Technol., 47, 303 (2013).

    CAS  Google Scholar 

  30. A. Haji and A. M. Shoushtari, Ind. Text., 62, 244 (2011).

    CAS  Google Scholar 

  31. L.–C. Su, Z. Xie, Y. Zhang, K. T. Nguyen, and J. Yang, Front. Bioeng. Biotechnol., 2, 23 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Y. Gao and R. Cranston, Text. Res. J., 78, 60 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminoddin Haji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haji, A., Nasiriboroumand, M. & Qavamnia, S.S. Cotton Dyeing and Antibacterial Finishing Using Agricultural Waste by an Eco-friendly Process Optimized by Response Surface Methodology. Fibers Polym 19, 2359–2364 (2018). https://doi.org/10.1007/s12221-018-8657-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8657-2

Keywords

Navigation