Interfacial Polymer Brush Layer for DNA Sensors Based on Graphene Transistors

Abstract

Graphene field-effect transistors (FETs) provide an efficient platform for enabling the label-free detection of DNA molecules. In this study, we used an interfacial polymer brush layer, which is inserted between graphene and SiO2, to enhance the electrical properties of the DNA sensors based on graphene FETs. When a polymer brush with no net dipole moment was used as a surface modification layer of SiO2, high field-effect mobility and stability were obtained in graphene FETs. In addition, it was confirmed that the graphene FETs exhibited stable operation in aqueous environments. To examine the response of DNA sensors based on graphene FETs, four types of DNA oligomers with homogeneous nucleotides (i.e. 12mer of adenine, thymine, cytosine, and guanine) were consecutively dropped onto the graphene surface and changes of electrical properties in the graphene FETs were monitored after complete drying of DNA solutions. These DNA oligomers n-doped the graphene due to the electron-rich characteristics of the nucleobases. In addition, electron and hole mobilities decreased gradually upon the addition of DNA solution because DNA molecules served as charged impurities. Graphene FETs with polymer brush provide a platform for detecting DNA molecules with low concentration.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. Suvarnaphaet and S. Pechprasarn, Sensors (Basel), 17, (2017).

  2. 2.

    M. D. Angione, R. Pilolli, S. Cotrone, M. Magliulo, A. Mallardi, G. Palazzo, L. Sabbatini, D. Fine, A. Dodabalapur, N. Cioffi, and L. Torsi, Mater Today, 14, 424 (2011).

    Article  CAS  Google Scholar 

  3. 3.

    R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. Li, W. Kim, P. J. Utz, and H. Dai, Proc. Natl. Acad. Sci. USA, 100, 4984 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    N. S. Green and M. L. Norton, Anal. Chim. Acta, 853, 127 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    S. Varghese, S. Varghese, S. Swaminathan, K. Singh, and V. Mittal, Electronics, 4, 651 (2015).

    Article  CAS  Google Scholar 

  6. 6.

    S. Wang, I. S. Cole, and Q. Li, RSC Adv., 6, 89867 (2016).

    Article  CAS  Google Scholar 

  7. 7.

    Y. Chong, Y. Ma, H. Shen, X. Tu, X. Zhou, J. Xu, J. Dai, S. Fan, and Z. Zhang, Biomaterials, 35, 5041 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto, Nano Lett., 9, 3318 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    M. Pumera, Mater Today, 14, 7 (2011).

    Article  CAS  Google Scholar 

  10. 10.

    S. Afsahi, M. B. Lerner, J. M. Goldstein, J. Lee, X. Tang, D. A. B. Jr, D. Pana, L. Locascio, A. Walker, and B. R. G. Francie Barrona, Biosens Bioelectron., 100, 85 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. T. W. Wang, K. H. Wei, C. T. Lin, and L. J. Li, Biosens Bioelectron., 41, 103 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Z. Chao, H. Le, Z. Hong, S. Zhongyue, Z. Zhiyong, and Z. Guo-Jun, ACS Appl. Mater. Interfaces, 7, 16954 (2015).

    Google Scholar 

  13. 13.

    M. H. Steinberg, Am. J. Hematol. Oncol., 43, 110 (1993).

    Article  CAS  Google Scholar 

  14. 14.

    P. K. Menon, K. Kapila, and V. C. Ohri, Med. J. Armed. Forces India, 55, 229 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    M. T. Hwang, P. B. Landon, J. Lee, D. Choi, A. H. Mo, G. Glinsky, and R. Lal, Proc. Natl. Acad. Sci. USA, 113, 7088 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    S. J. Heerema and C. Dekker, Nat. Nanotechnol., 11, 127 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    G. M. Ku, E. Lee, B. Kang, J. H. Lee, K. Cho, and W. H. Lee, RSC Adv., 7, 27100 (2017).

    Article  CAS  Google Scholar 

  18. 18.

    W. H. Lee and Y. D. Park, Adv. Mater. Interfaces, 5, (2018).

  19. 19.

    W. H. Lee, J. Park, Y. Kim, K. S. Kim, B. H. Hong, and K. Cho, Adv. Mater., 23, 3460 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, Nano Lett., 10, 1149 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    K. M. Burson, W. G. Cullen, S. Adam, C. R. Dean, K. Watanabe, T. Taniguchi, P. Kim, and M. S. Fuhrer, Nano Lett., 13, 3576 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat. Phys., 4, 377 (2008).

    Article  CAS  Google Scholar 

  23. 23.

    S. Y. Chen, P. H. Ho, R. J. Shiue, C. W. Chen, and W. H. Wang, Nano Lett., 12, 964 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    X. Wang, J. B. Xu, C. Wang, J. Du, and W. Xie, Adv. Mater., 23, 2464 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Z. Liu, A. A. Bol, and W. Haensch, Nano Lett., 11, 523 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    N. Cernetic, D. O. Hutchins, H. Ma, and A. K. Y. Jen, Appl. Phys. Lett., 106, 021603 (2015).

    Article  CAS  Google Scholar 

  27. 27.

    S. A. DiBenedetto, A. Facchetti, M. A. Ratner, and T. J. Marks, Adv. Mater., 21, 1407 (2009).

    Article  CAS  Google Scholar 

  28. 28.

    A. Ulman, Chem. Rev., 96, 1533 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    K. V. Nguyen, M. M. Payne, J. E. Anthony, J. H. Lee, E. Song, B. Kang, K. Cho, and W. H. Lee, Sci. Rep., 6, 33224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    K. Park, S. H. Park, E. Kim, J.-D. Kim, S.-Y. An, H. S. Lim, H. H. Lee, D. H. Kim, D. Y. Ryu, D. R. Lee, and J. H. Cho, Chem. Mater., 22, 5377 (2010).

    Article  CAS  Google Scholar 

  31. 31.

    W. H. Lee, H. H. Choi, D. H. Kim, and K. Cho, Adv. Mater., 26, 1660 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    H. Tian, L. Wang, Z. Sofer, M. Pumera, and A. Bonanni, Sci. Rep., 6, 33046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wi Hyoung Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ku, G.M., Kim, J.W., Jang, Yh. et al. Interfacial Polymer Brush Layer for DNA Sensors Based on Graphene Transistors. Fibers Polym 19, 2483–2488 (2018). https://doi.org/10.1007/s12221-018-8608-y

Download citation

Keywords

  • Graphene
  • Polymer brush
  • DNA
  • Field-effect transistor
  • Sensor