Skip to main content
Log in

Fabrication of a Biodegradable Multi-layered Polyvinyl Alcohol Stent

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study aims to develop biodegradable vascular stents that prevent permanent damage caused by rejection of the immune system of the human body. Polyvinyl alcohol (PVA) yarns are twisted to enhance their strength. The twisted yarns are braided and then coated with chitosan (CS). The CS-coated PVA vascular stents are chemically crosslinked with genipin (GP) to improve their flexibility and biodegradability. Their morphological characteristics are also observed using a stereoscopic microscope, and their properties are evaluated through scanning electron microscopy, Fourier transform infrared, bending test, biodegradability test, drug release measurement, and MTT assay. Results reveal that wet PVA-CS-GP vascular stents coated with multiple CS layers can maintain a tubular structure when they are bent. After crosslinking is performed, the compressive strength of the PVA-CS-GP stents is 17.04 times higher than that of pure PVA. The weight loss rate of the PVA-CS-GP vascular stents as <3 % after 30 days. The PVA-CS-GP vascular stents composed of 0.10 % heparin sodium show a good drug release effect. Biological activity test indicates that these stents exhibit good proliferation, and our structural model verifies that they are good vascular stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hirakawa, T. Ninomiya, Y. Kiyohara, Y. Murakami, S. Saitoh, H. Nakagawa, A. Okayama, A. Tamakoshi, K. Sakata, K. Miura, H. Ueshima, and T. Okamura, J. Epidemiol., 27, 123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. C. C. Crestani, Neurosci. Biobehav. R., 7, 466 (2017).

    Article  Google Scholar 

  3. A. Dabass, E. O. Talbott, R. A. Bilonick, J. R. Rager, A. Venkat, G. M. Marsh, C. Duan, and T. Xue, Environ. Res., 151, 564 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. S. Devos, B. Cox, S. Dhondt, T. Nawrot, and K. Putman, Sci. Total Environ., 527–528, 413 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. E. C. Santos Lapa, A. G. Santos Lima, M. P. Barros Oliveira Sá, E. C. dos Santos Filho, J. C. de Siqueira Campos, and G. A. da Fonseca Carvalho Antunes Lima, J. Cardiothoracic Vasc. Anesth., 31, e59 (2017).

    Google Scholar 

  6. A. M. Omran, J. Egypt. Soc. Cardiothorac. Surg., 24, 286 (2016).

    Article  Google Scholar 

  7. F. Otsuka, J. Cardiol. Cases, 15, 73 (2017).

    Article  Google Scholar 

  8. C.-C. Lai, T.-H. Lin, H.-K. Yip, C.-P. Liu, A.-H. Li, K.-G. Shyu, S.-C. Chang, and G.-Y. Mar, J. Chin. Med. Assoc., 79, 239 (2016).

    Article  PubMed  Google Scholar 

  9. K. P. Bouki, D. Vlad, M. Riga, I. Stergiouli, and K. P. Toutouzas, Hell. J. Cardiol., 57, 129 (2016).

    Article  Google Scholar 

  10. T. I. Chang, M. E. Montez-Rath, T. T. Tsai, M. A. Hlatky, and W. C. Winkelmayer, J. Am. Coll. Cardiol., 67, 1459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. Bharadwaj and D. S. Chadha, Med. J. Armed. Force. India, 72, 367 (2016).

    Article  Google Scholar 

  12. K.-C. Ueng, S.-P. Wen, C.-W. Lou, and J.-H. Lin, J. Ind. Text., 45, 965 (2016).

    Article  CAS  Google Scholar 

  13. C.-J. Pan, J.-J. Tang, Y.-J. Weng, J. Wang, and N. Huang, Colloid Surf. B-Biointerfaces, 73, 199 (2009).

    Article  CAS  Google Scholar 

  14. M.-C. Chen, C.-T. Liu, H.-W. Tsai, W.-Y. Lai, Y. Chang, and H.-W. Sung, Biomaterials, 30, 5560 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. A. A. Barros, C. Oliveira, E. Lima, A. R. C. Duarte, and R. L. Reis, Appl. Mater. Today, 5, 9 (2016).

    Article  Google Scholar 

  16. I. Kawahara, S. Ono, and K. Maeda, J. Pediatr. Surg., 51, 1967 (2016).

    Article  PubMed  Google Scholar 

  17. C. Wang, Z. Yu, Y. Cui, Y. Zhang, S. Yu, G. Qu, and H. Gong, J. Mater. Sci. Tech., 32, 925 (2016).

    Article  Google Scholar 

  18. T. Grolich, M. Crha, L. Novotný, Z. Kala, A. Hep, A. Nečas, J. Hlavsa, L. Mitáš, and J. Misík, J. Surg. Res., 193, 606 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. A. A. Aldana, A. González, M. C. Strumia, and M. Martinelli, Mater. Chem. Phys., 134, 317 (2012).

    Article  CAS  Google Scholar 

  20. T. Wang, X. Ji, L. Jin, Z. Feng, J. Wu, J. Zheng, H. Wang, Z.-W. Xu, L. Guo, and N. He, ACS Appl. Mater. Inter., 5, 3757 (2013).

    Article  CAS  Google Scholar 

  21. S. Lavi and V. Džavík, Can. J. Cardiol., 31, 957 (2015).

    Article  PubMed  Google Scholar 

  22. L. Gao, H. Gan, Z. Meng, R. Gu, Z. Wu, L. Zhang, X. Zhu, W. Sun, J. Li, Y. Zheng, and G. Dou, Colloid Surf. BBiointerfaces, 117, 398 (2014).

    Article  CAS  Google Scholar 

  23. S.-J. Liu, F.-J. Chiang, C.-Y. Hsiao, Y.-C. Kau, and K.-S. Liu, Ann. Biomed. Eng., 38, 3185 (2010).

    Article  PubMed  Google Scholar 

  24. J. H. Kim, T. J. Kang, and W.-R. Yu, J. Biomech., 41, 3202 (2008).

    Article  PubMed  Google Scholar 

  25. V. M. Merkle, D. Martin, M. Hutchinson, P. L. Tran, A. Behrens, S. Hossainy, J. Sheriff, D. Bluestein, X. Wu, and M. J. Slepian, ACS Appl. Mater. Inter., 7, 8302 (2015).

    Article  CAS  Google Scholar 

  26. M. Azaouzi, A. Makradi, J. Petit, S. Belouettar, and O. Polit, Comp. Mater. Sci., 79, 326 (2013).

    Article  CAS  Google Scholar 

  27. K. Maleckis, P. Deegan, W. Poulson, C. Sievers, A. Desyatova, J. MacTaggart, and A. Kamenskiy, J. Mech. Behav. Biomed., 75, 160 (2017).

    Article  Google Scholar 

  28. S. M. Patel, J. Li, and S. A. Parikh, Interv. Cardiol. Clin., 5, 365 (2016).

    PubMed  Google Scholar 

  29. S.-J. Liu, C.-Y. Hsiao, J.-K. Chen, K.-S. Liu, and C.-H. Lee, Mat. Sci. Eng: C-Mater., 31, 1129 (2011).

    Article  CAS  Google Scholar 

  30. S. Hossfeld, A. Nolte, H. Hartmann, M. Recke, M. Schaller, T. Walker, J. Kjems, B. Schlosshauer, D. Stoll, H. P. Wendel, and R. Krastev, Acta Biomater., 9, 6741 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. K. Burczak, E. Gamian, and A. Kochman, Biomaterials, 17, 2351 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. V. M. Merkle, P. L. Tran, M. Hutchinson, K. R. Ammann, K. DeCook, X. Wu, and M. J. Slepian, Acta Biomater., 27, 77 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. J. Negishi, K. Nam, T. Kimura, T. Fujisato, and A. Kishida, Eur. J. Pharm. Sci., 41, 617 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, MC., Lou, CW., Lin, JY. et al. Fabrication of a Biodegradable Multi-layered Polyvinyl Alcohol Stent. Fibers Polym 19, 1596–1604 (2018). https://doi.org/10.1007/s12221-018-8141-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8141-z

Keywords

Navigation