Skip to main content

Comparative Performance of Copper and Silver Coated Stretchable Fabrics

Abstract

The present work described the development of multifunctional, electrically conductive and durable fabrics by coating of silver and copper particles using a dipping-drying method. The particles were directly grown on fabric structure to form electrically conductive fibers. Particles were found to fill the spaces between the microfibers, and were stacked together to form networks with high electrical conductivity. The electrically conductive fabrics showed low resistance with high stretch ability. The utility of conductive fabrics was analyzed for electromagnetic shielding ability over frequency range of 30 MHz to 1.5 GHz. The EMI shielding was found to increase with increase in concentration of copper and silver particles. Furthermore, the heating performance of the copper and silver coated fabric was studied through measuring the change in temperature at the surface of the fabric while applying a voltage difference across the fabric. The maximum temperature (119°C for silver and 112°C for copper) were obtained when the applied voltage was 10 V. Moreover, the role of deposited particles on antibacterial properties was examined against pathogenic bacteria such as Staphylococcus aureus and Escherichia coli. At the end, the durability of coated fabrics was examined against several washing cycles. The fabrics showed good retention of the particles, proved by small loss in the conductivity of the material after washing.

This is a preview of subscription content, access via your institution.

References

  1. H. W. Cui, K. Suganuma, and H. Uchida, Nano Res., 8, 1604 (2015).

    CAS  Article  Google Scholar 

  2. Leitch, “Proceedings of New Generation of Wearable Systems for e-health”, pp.11-14, 2003.

  3. V. S. Gowri, L. Almeida, de M. T. P. Amorim, J. Mater. Sci., 45, 2427 (2010).

    Article  Google Scholar 

  4. Philips and Levi, Tech. Text. Int., 10, 22 (2001).

  5. S. I. Hu, J. L. H. P. Meng, Li, and G. Q. Ibekwe, Smart Mater. Struct., 21, 1 (2012).

    Google Scholar 

  6. J. Coosemans, B. Hermans, and R. Puers, Sensors Actuators A Phys., 130-131, 48 (2006).

    CAS  Article  Google Scholar 

  7. S. Coyle, K. T. Lau and N. Moyna, Inf. Technol. Biomed., 14, 364 (2010).

    Article  Google Scholar 

  8. S. M. D. Eves, J. Green, C. van Heerden, and J. Mama, Philips Res. Intell. Fiber Gr., 10, 4 (2001).

    Google Scholar 

  9. P. M. S. Monika, Int. J. Polym. Text. Eng., 1, 1 (2014).

    Google Scholar 

  10. M. Havich, Am. Text. Int., Vol. 10, 1999.

  11. Roberts, Just Style Featur., Vol. 10, 2000.

  12. Lennox-Kerr, High Perform. Text., 11, 6 (1990).

  13. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. L. Yang, C. Li, and P. Willis, Adv. Mater., 15, 1161 (2003).

    CAS  Article  Google Scholar 

  14. X. Liu, H. Chang, Y. Li, W. T. S. Huck, and Z. Zheng, Appl. Mater. Interfaces, 529–535 (2010).

    Google Scholar 

  15. N. K. Bashir, T. Skrifvars, and M. Persson, Polym. Adv. Technol., 22, 214 (2011).

    Article  Google Scholar 

  16. A. P. Maity, S. Chatterjee, A. Singh, and B. Singh, J. Text. Inst., 105, 887 (2014).

    CAS  Article  Google Scholar 

  17. S. Hu, L. B. Pasta, M. La Mantia, F. Cui, L. F. Jeong, Y. Deshazer, H. D. Choi, J. W. Han, and S. M. Cui, Nano Lett., 10, 708 (2010).

    CAS  Article  Google Scholar 

  18. T. Yamashita, T. Khumpuang, S. Miyake, and K. Itoh, Electron. Commun. Japan, 97, 48 (2014).

    Article  Google Scholar 

  19. T. Ramachandran and C. Vigneswaran, J. Ind. Text., 39, 81 (2009).

    CAS  Article  Google Scholar 

  20. J. Molina, A. I. del Río, J. Bonastre, and F. Cases, Eur. Polym. J., 45, 1302 (2009).

    CAS  Article  Google Scholar 

  21. A. J. Patil and S. C. Deogaonkar, Text. Res. J., 82, 1517 (2012).

    Article  Google Scholar 

  22. Z. Yildiz, I. Usta, and A. Gungor, Text. Res. J., 82, 2137 (2012).

    Article  Google Scholar 

  23. J. N. Coleman, U. Khan, and Y. K. Gun'ko, Adv. Mater., 44, 689 (2003).

    Google Scholar 

  24. M. I. H. Panhuis, J. Mater. Chem., 16, 3598 (2006).

    Article  Google Scholar 

  25. H. C. Chen, K. C. Lee, and J. H. Lin, Compos. Pt. A-Appl. Sci. Manuf., 25, 1249 (2004).

    Article  Google Scholar 

  26. J. Paul, G. R. Torah, and K. Yang, Meas. Sci. Technol., 25, 25006 (2014).

    Article  Google Scholar 

  27. K. W. Oh, H. J. Park, and S. H. Kim, J. Appl. Polym. Sci., 88, 1225 (2003).

    CAS  Article  Google Scholar 

  28. A. Pentland and H. Tan, “First IEEE International Symposium on Wearable Computers”, pp.167–168, 1997.

    Google Scholar 

  29. E. G. Han, E. A. Kim, and K. W. Oh, Synth. Met., 123, 469 (2001).

    CAS  Article  Google Scholar 

  30. Z. An, X. Zhang, and H. Li, J. Alloys Compd., 621, 99 (2015).

    CAS  Article  Google Scholar 

  31. J. W. I. Ge, S. X. Liu, and C. F. Zhang, PubMed., 32, 118 (2012).

    CAS  Google Scholar 

  32. AATCC Test Method 147, “Antibacterial Activity Assessment of Textile Materials: Parallel Streak Method”, American Association of Textile Chemists and Colorists, North Carolina, USA, 2011.

  33. T. Suwatthanarak, B. Than-ardna, and D. Danwanichakul, Mater. Lett., 168, 31 (2016).

    CAS  Article  Google Scholar 

  34. A. Sheffield and M. J. Doyle, Wool, Text. Res. J., 75, 203 (2002).

    Article  Google Scholar 

  35. Y. Kobayashi, M. Kamimaru, K. Tsuboyama, T. Nakanishi, and J. Komiyama, Text. Res. J., 76, 695 (2006).

    CAS  Article  Google Scholar 

  36. A. K. Sasmal, S. Dutta, and T. Pal, Dalt. Trans., 45, 3139 (2016).

    CAS  Article  Google Scholar 

  37. T. A. Lastovina, A. P. Budnyk, G. A. Khaishbashev, E. A. Kudryavtsev, and A. V. Soldatov, J. Serbian Chem. Soc., 81, 751 (2016).

    CAS  Article  Google Scholar 

  38. D. S. Cui, H. W. Q. Fan, Polym. Int., 62, 1644 (2013).

    CAS  Google Scholar 

  39. R. Haggenmueller, F. Du, J. E. Fischer, and K. I. Winey, Polymer (Guildf)., 47, 2381 (2006).

    CAS  Article  Google Scholar 

  40. S. T. A. Hamdani, P. Potluri, and A. Fernando, Materials (Basel), 6, 1072 (2013).

    Article  Google Scholar 

  41. L. R. Pahalagedara, I. W. Siriwardane, N. D. Tissera, R. N. Wijesena, and K. M. N. de Silva, RSC Adv., 7, 19174 (2017).

    CAS  Article  Google Scholar 

  42. W. Studer, A. M. Limbach, L. K. van Duc, L. Krumeich, F. Athanassiou, E. K. Gerber, L. C. Moch, and H. Stark, Toxicol. Lett., 197, 169 (2010).

    CAS  Article  Google Scholar 

  43. S. Karlsson, H. L. Cronholm, P. Hedberg, Y. Tornberg, M. de Battice, L. Svedhem, and I. Wallinder, Toxicology, 313, 59 (2013).

    CAS  Article  Google Scholar 

  44. M. Zheng, F. Davidson, and X. Huang, J. Am. Chem. Soc., 125, 7790 (2003).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Ali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Baheti, V., Militky, J. et al. Comparative Performance of Copper and Silver Coated Stretchable Fabrics. Fibers Polym 19, 607–619 (2018). https://doi.org/10.1007/s12221-018-7917-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7917-5

Keywords

  • Silver particles
  • Copper particles
  • Stretchable conductive fabrics
  • Smart textiles
  • EMI shielding