Skip to main content
Log in

Simulation of Transverse Mechanical Properties Using Interfacial Shear Stress Ratio for CF-PEI Thermoplastic Composites at Elevated Temperatures

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The mechanical properties of a fiber-reinforced composite are determined primarily by the physical properties of the fiber and the matrix and the bond strength between these two materials. The latter also depends on the manufacturing process. In this study, micromechanical analyses employing a finite element method were used to attain an understanding of these correlations. Most early models used in micromechanical analyses of fiber-reinforced composites assumed perfect interfacial bonding between the fiber and the matrix. However, in real fiber-reinforced composites, this bonding is incomplete. While the fiber/matrix interface has been an active area of study, most researchers have relied on assumptions for properties that cannot be measured. As a means of controlling stress transfer in our micromechanical analyses, a new method was devised employing the ratio between the measured interfacial sheer stress (IFSS) in single-fiber fragmentation (SFF) tests and the simulated IFSS assuming perfect interfacial bonding. In simulated transverse tensile tests, this method resulted in an error area that was 44.5 % less than that obtained under perfect bonding conditions because using the IFSS ratio reduces errors associated with the stress transfer at the fiber/matrix interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hou, L. Ye, and Y. W. Mai, J. Reinf. Plast. Compos., 15, 1117 (1996).

    Article  CAS  Google Scholar 

  2. M. Hou, L. Ye, and Y. W. Mai, J. Mater. Process. Technol., 63, 334 (1997).

    Article  Google Scholar 

  3. M. Hou, L. Ye, and Y. W. Mai, Appl. Compos. Mater., 6, 35 (1999).

    Article  Google Scholar 

  4. K. Y. Kim and L. Ye, Compos. Pt. A-Appl. Sci. Manuf., 35, 477 (2004).

    Article  CAS  Google Scholar 

  5. S. Arjula, A. P. Harsha, and M. K. Ghosh, Mater. Lett., 62, 3246 (2008).

    Article  CAS  Google Scholar 

  6. J. M. M. De Kok and H. E. H. Meijer, Compos. Pt. A-Appl. Sci. Manuf., 30, 905 (1999).

    Article  Google Scholar 

  7. J. M. M. De Kok and T. Peijs, Compos. Pt. A-Appl. Sci. Manuf., 30, 917 (1999).

    Article  Google Scholar 

  8. K. K. Jin, Y. Huang, Y. H. Lee, and S. K. Ha, J. Compos. Mater., 42, 1825 (2008).

    Article  Google Scholar 

  9. M. Hojo, M. Mizuno, T. Hobbiebrunken, T. Adachi, M. Tanaka, and S. K. Ha, Compos. Sci. Technol., 69, 1726 (2009).

    Article  CAS  Google Scholar 

  10. V. C. Li, Y. Wang, and S. Backer, J. Mech. Phys. Solids., 39, 607 (1991).

    Article  Google Scholar 

  11. H. Y. Liu, Y. W. Mai, and L. Ye, Key Eng. Mater., 145-149, 613 (1998).

    Article  CAS  Google Scholar 

  12. J. D. Achenbach and H. Zhu, J. Mech. Phys. Solids, 37, 381 (1989).

    Article  Google Scholar 

  13. H. Mahiou and A. Beakou, Compos. Pt. A-Appl. Sci. Manuf., 29, 1035 (1998).

    Article  Google Scholar 

  14. L. J. Broutman and B. D. Agarwal, Polym. Eng. Sci., 14, 581 (1974).

    Article  CAS  Google Scholar 

  15. P. S. Theocaris, E. P. Sideridis, and G. C. Papanicolaou, J. Reinf. Plast. Compos., 4, 396 (1985).

    Article  CAS  Google Scholar 

  16. F. H. J. Maurer, R. Simha, and R. K. Jain, Compos. Interfaces, 367 (1986).

    Google Scholar 

  17. F. Lene and D. Leguillon, Int. J. Solids. Struct., 18, 443 (1982).

    Article  Google Scholar 

  18. Z. Hashin, Mech. Mater., 8, 333 (1990).

    Article  Google Scholar 

  19. K. Y. Kim and L. Ye, J. Reinf. Plast. Compos., 24, 429 (2005).

    Article  CAS  Google Scholar 

  20. D. Mounier, C. Poilâne, C. Bûcher, and P. Picart, Acoustics 2012 (2012).

    Google Scholar 

  21. B. F. Sørensen, Mech. Mater., 104, 38 (2017).

    Article  Google Scholar 

  22. S. Zhandarov, E. Pisanova, E. Mäder, and J. A. Nairn, J. Adhes. Sci. Technol., 15, 205 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Young Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JC., Kim, KY., Jung, GS. et al. Simulation of Transverse Mechanical Properties Using Interfacial Shear Stress Ratio for CF-PEI Thermoplastic Composites at Elevated Temperatures. Fibers Polym 19, 1102–1108 (2018). https://doi.org/10.1007/s12221-018-7847-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7847-2

Keywords

Navigation