Skip to main content
Log in

Development of Cotton Candy Method for High Productivity Polypropylene Fibers Webs

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The cotton candy method (CoCAM) is developed for high productivity of polymer micro-and nano-fibers. Polypropylene was molten in a single screw extruder of the CoCAM at air pressures of 0.2-0.5 MPa with nozzle temperatures of 280-350 °C and the constant air temperature of 600 °C. The distance from the nozzle to the collector was set at 10-90 cm. Thermal images informed the accumulation of PP fibers flows at shorter collector distance. The diameters of PP micro-fibers decreased with increasing the air pressures and the nozzle temperatures. Crystallinity of the PP micro-fibers increased when increasing the nozzle temperature due to higher occasion of molecular orientation. The degree of the fiber entanglement in the PP micro-fibers decreased when increasing the collector distance, which affected on the declination of tensile strength. Ductility of the PP micro-fibers improved at high collector distances. The optimum condition of the PP micro-fibers was found at the average diameter of 2.3 μm at 0.5 MPa with the nozzle temperature of 340 oC collected at 60 cm. The productivity of the PP micro-fibers webs from the CoCAM was 144 g/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kotek, Polym. Rev., 48, 221 (2008).

    Article  CAS  Google Scholar 

  2. Y. Lee and L. C. Wadsworth, Polymer, 33, 1200 (1992).

    Article  CAS  Google Scholar 

  3. M. A. Hassan, B. Y. Yeom, A. Wilkie, B. Pourdeyhimi, and S. A. Khan, J. Membr. Sci., 427, 336 (2013).

    Article  CAS  Google Scholar 

  4. R. B. Randall and W.-C. Ko, Int. Nonwovens J., 12, 21 (2003).

    Google Scholar 

  5. W. Han, G. S. Bhat, and X. Wang, Ind. Eng. Chem. Res., 55, 3150 (2016).

    Article  CAS  Google Scholar 

  6. C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, Polymer, 48, 3306 (2007).

    Article  CAS  Google Scholar 

  7. R. Uppal, G. Bhat, C. Eash, and K. Akato, Fiber. Polym., 14, 660 (2013).

    Article  CAS  Google Scholar 

  8. F. Zuo, D. H. Tan, Z. Wang, S. Jeung, C. W. Macosko, and F. S. Bates, ACS Macro Lett., 2, 301 (2013).

    Article  CAS  Google Scholar 

  9. V. Bansal and R. L. Shambaugh, Ind. Eng. Chem. Res., 37, 1799 (1998).

    Article  CAS  Google Scholar 

  10. Y. Lee and L. C. Wadsworth, Polym. Eng. Sci., 30, 1413 (1990).

    Article  CAS  Google Scholar 

  11. P. W. Gibson, C. Lee, F. Ko, and D. Reneker, J. Eng. Fiber. Fabr., 2, 32 (2007).

    Google Scholar 

  12. S. Sinha-Ray, A. L. Yarin, and B. Pourdeyhimi, Polymer, 55, 4241 (2014).

    Article  CAS  Google Scholar 

  13. Z. Bo, Indian J. Fibre. Text., 37, 326 (2012).

    CAS  Google Scholar 

  14. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polym. Sci., 96, 557 (2005).

    Article  CAS  Google Scholar 

  15. D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Adv. Appl. Mech., 41, 43 (2007).

    Article  Google Scholar 

  16. P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee, and M. Möller, Polymer, 48, 6823 (2007).

    Article  CAS  Google Scholar 

  17. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    Article  CAS  Google Scholar 

  18. A. Frenot and I. S. Chronakis, Curr. Opin. Colloid Interface Sci., 8, 64 (2003).

    Article  CAS  Google Scholar 

  19. Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  20. K. Watanabe, B.-S. Kim, and I.-S. Kim, Polym. Rev., 51, 288 (2011).

    Article  CAS  Google Scholar 

  21. K.-H. Lee, O. Ohsawa, K. Watanabe, I.-S. Kim, S. R. Givens, B. Chase, and J. F. Rabolt, Macromolecules, 42, 5215 (2009).

    Article  CAS  Google Scholar 

  22. C.-S. Jao, Y. Wang, and C. Wang, Eur. Polym. J., 54, 181 (2014).

    Article  CAS  Google Scholar 

  23. M. R. Badrossamary, H. A. McIlwee, J. A. Goss, and K. K. Parker, Nano Lett., 10, 2257 (2010).

    Article  Google Scholar 

  24. G. M. Gonzalez, L. A. MacQueen, J. U. Lind, S. A. Fitzgibbons, C. O. Chantre, I. Huggler, H. M. Golecki, J. A. Goss, and K. K. Parker, Macromol. Mater. Eng., 302, 1600365 (2017).

    Article  Google Scholar 

  25. M. A. Hammami, M. Krifa, and O. Harzallah, J. Text. I., 105, 637 (2014).

    Article  CAS  Google Scholar 

  26. X. Zhang and Y. Lu, Polym. Rev., 54, 677 (2014).

    Article  CAS  Google Scholar 

  27. B. Raghavan, H. Soto, and K. Lozano, J. Eng. Fiber. Fabr., 8, 52 (2013).

    CAS  Google Scholar 

  28. L. Wei, H. Yu, L. Jia, and X. Qin, Text. Res. J., 88, 80 (2018).

    Article  CAS  Google Scholar 

  29. Z. Shao, L. Yu, and M. Wang, Nanoscale Res. Lett., doi:10.1186/s11671-017-2240-4 (2017).

    Google Scholar 

  30. R. Wongpajan, S. Thumsorn, H. Inoya, M. Okoshi, and H. Hamada, Proc. SPE ANTEC Indianapolis, USA, pp.260–264, 2016.

    Google Scholar 

  31. R. Takematsu, A. Tada, M. Okoshi, H. Inoya, Y. Aoi, and H. Hamada, Proc. SPE ANTEC Indianapolis, USA, pp.542–546, 2016.

    Google Scholar 

  32. L. Ren, R. Ozisik, S. O. Kotha, and P. T. Underhill, Macromolecules, 48, 2593 (2014).

    Article  Google Scholar 

  33. J. B. Lee, X. Wang, S. Faley, B. Baer, D. A. Balikov, H.-J. Sung, and L. M. Bellan, Adv. Healthc. Mater., 5, 781 (2016).

    Article  CAS  Google Scholar 

  34. T. Senthilram, L. A. Mary, J. R. Venugopol, L. Nagarajan, S. Ramakrishna, and V. R. G. Dev, Mater. Today, 14, 226 (2011).

    Article  CAS  Google Scholar 

  35. X.-Y. Yu, R.-X. Xu, C. Gao, T. Luo, Y. Jia, J.-H. Liu, and X.-J. Huang, ACS Appl. Mater. Interfaces, 4, 1954 (2012).

    Article  CAS  Google Scholar 

  36. F. Liu, R. J. Avena-Bustillos, C. Bilbao-Sainz, R. Woods, B.-S. Chiou, D. Wood, T. Williams, W. Yokohama, G. M. Glenn, T. H. McHugh, and F. Zhong, J. Food Sci., 82, 1402 (2017).

    Article  CAS  Google Scholar 

  37. D. Cho, H. Zhou, Y. Cho, D. Audus, and Y. L. Joo, Polymer, 51, 6005 (2010).

    Article  CAS  Google Scholar 

  38. R. Wongpajan, S. Thumsorn, H. Inoya, M. Okoshi, and H. Hamada, Proc. 13th EMSES, Thailand, pp.262–265, 2016.

    Google Scholar 

  39. G. W. Ehrenstein, G. Riedel, and P. Trawiel in “Thermal Analysis of Plastics: Theory and Practice”, p.15, Hanser, Krugzell, 2004.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supaphorn Thumsorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongpajan, R., Thumsorn, S., Inoya, H. et al. Development of Cotton Candy Method for High Productivity Polypropylene Fibers Webs. Fibers Polym 19, 135–146 (2018). https://doi.org/10.1007/s12221-018-7574-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7574-0

Keywords

Navigation