Adsorption Kinetics of Acid Red on Activated Carbon Web Prepared from Acrylic Fibrous Waste

Abstract

In this work, activated carbon (AC) web was prepared using physical activation under the layer of charcoal in high temperature furnace. The carbonization of acrylic fibrous waste was performed at different temperatures (800 °C, 1000 °C, and 1200 °C) with heating rate of 300 °C/h and at different holding time. At 1200 °C, the heating rate of 300 °C/h and no holding time provided better results of surface area as compared to carbonization at 800 °C and 1000 °C. The activated carbon web (AC) prepared at 1200 °C was used for removal of Acid Red 27 dye from aqueous media by varying different parameters like initial concentration of dye, stirring speed, adsorbent dosage, and pH. The results were evaluated using non-linear forms of Langmuir and Freundlich isotherms. The Freundlich isotherm was found to describe the results more effectively because of non-homogenous surface of activated carbon web. Further, the kinetics of adsorption was examined using linear and nonlinear forms of pseudo 1st order and pseudo 2nd order.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. K. Gupta and Suhas, J. Environ. Manag., 90, 2313 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    C. H. Huang, K. P. Chang, H. D. Ou, Y. C. Chiang, and C. F. Wang, Microporous Mesoporous Mater., 141, 102 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    E. Forgacs, T. Cserháti, and G. Oros, Env. Int., 30, 953 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    G. Ciardelli and N. Ranieri, Water Res., 35, 567 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    R. C. Bansal, “Activated Carbon Adsorption”, 1st ed., pp.25–28, Taylor and Francis Group, London, 2005.

    Google Scholar 

  6. 6.

    F. S. Hashem and M. S. Amin, J. Therm. Anal. Calorim., 116, 835 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    S. M. A. El-Gamal, M. S. Amin, and M. A. Ahmed, J. Env. Chem. Eng., 3, 1702 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    F. S. Hashem, M. S. Amin, and S. M. A. El-Gamal, Appl. Clay Sci., 115, 189 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    M. A. Daley, C. L. Mangun, J. A. DeBarrb, S. Riha, A. A. Lizzio, G. L. Donnals, and J. Economy, Carbon N. Y., 35, 411 (1997).

    CAS  Article  Google Scholar 

  10. 10.

    C. L. Mangun, M. A. Daley, R. D. Braatz, and J. Economy, Carbon N. Y., 36, 123 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    G. T. Sivy and M. M. Coleman, Carbon N. Y., 19, 137 (1981).

    CAS  Article  Google Scholar 

  12. 12.

    M. A. Nahil and P. T. Williams, J. Anal. Appl. Pyrolysis, 89, 51 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    V. Baheti, S. Naeem, J. Militky, M. Okrasa, and B. Tomkova, Fiber. Polym., 16, 2193 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    U. Gecgel, G. Ozcan, and G. C. Gurpinar, J. Chem., 201, 1 (2013).

    Article  Google Scholar 

  15. 15.

    Z. Z. Chowdhury, S. M. Zain, R. A. Khan, and K. Khalid, Orient. J. Chem., 27, 405 (2011).

    CAS  Google Scholar 

  16. 16.

    Y. Liu, Y. H. Choi, H. G. Chae, P. Gulgunje, and S. Kumar, Polym. Guildf, 54, 4003 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    M. A. Zaini, Y. Amano, and M. Machidaa, J. Hazard. Mater, 180, 552 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    S. Jagannathan, H. G. Chae, R. Jain, and S. Kumar, J. Power Sources, 185, 676 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    S. Naeem, V. Baheti, V. Tunakova, J. Militky, K. Daniel, and B. Tomkova, Carbon N. Y., 111, 439 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Ma, X. Yin, and Q. Li, Nonferrous Met. Soc., 23, 1652 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    S. Marius, C. Benoit, C. Igor, D. Mariana, and P. Stelian, Sci. Study Res., 12, 307 (2011).

    Google Scholar 

  22. 22.

    I. Dahil, Environ. J., 2, 35 (2016).

    Google Scholar 

  23. 23.

    D. C. Sharma and C. F. Forster, Water Res., 27, 1201 (1993).

    CAS  Article  Google Scholar 

  24. 24.

    S. Naeem, V. Baheti, J. Militky, J. Wiener, P. Behera, and A. Ashraf, Fiber. Polym., 17, 1245 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    M. A. Rahman, S. M. R. Amin, and A. M. S. Alam, Dhaka Univ. J. Sci., 60, 185 (2012).

    CAS  Google Scholar 

  26. 26.

    Y. Al-Degs, M. I. El-Barghouthi, A. El-Sheikh, and G. M. Walker, Dye Pigment., 77, 16 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    Y. Al-Degs, M. Khraisheh, S. Allen, and M. Ahmad, Water Res., 34, 927 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    I. Shah, R. Adnan, W. Ngah, and Y. Taufiq, PLoS One, 10 (2015).

  29. 29.

    R. Baccar, P. Blánquez, J. Bouzid, M. Feki, and M. Sarrà, Chem. Eng. J., 165, 457 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    M. Ismail, C. N. Weng, H. Abdul Rahman, and A. Zakaria, J. Geogr. Earth Sci., 1, 1 (2013).

    Google Scholar 

  31. 31.

    A. Demirbas, Energy Sources Part A, 31, 217 (2009).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Salman Naeem.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salman Naeem, M., Javed, S., Baheti, V. et al. Adsorption Kinetics of Acid Red on Activated Carbon Web Prepared from Acrylic Fibrous Waste. Fibers Polym 19, 71–81 (2018). https://doi.org/10.1007/s12221-018-7189-5

Download citation

Keywords

  • Physical activation
  • Stabilization
  • Carbonization
  • Heating rate
  • Holding time
  • Activated carbon