Skip to main content
Log in

Fabrication and Characterization of Poly(L-lactic Acid) Fiber Mats Using Centrifugal Spinning

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) fine fibers and multi walled carbon nanotube (MWCNT) reinforced PLA fine fiber composites were developed utilizing a centrifugal spinning process. Chloroform and chloroform combined with dimethylformamide (DMF) were used to prepare solutions with varying concentrations of PLA and MWCNTs. The optimum spinning conditions to produce PLA fibers and its composites were determined. The morphology of the fibers was analyzed using scanning electron microscopy. In addition, X-ray diffraction analysis and thermo-physical characterization was conducted using thermogravimetric analysis and differential scanning calorimetry. PLA fibers with an average diameter of 481 nanometers and PLA/MWCNT fibers with an average diameter of 358 nanometers were obtained. A decrease in the crystallinity of the fibers was observed when compared to bulk PLA values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, Compos. Sci. Technol., 61, 1189 (2001).

    Article  CAS  Google Scholar 

  2. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. de Hoyos, H. Vasquez, and K. Lozano, Mater. Today, 13, 12 (2010).

    Article  CAS  Google Scholar 

  4. S. Padron, A. Fuentes, D. Caruntu, and K. Lozano, J. Appl. Phys., 113, 024318 (2013).

    Article  CAS  Google Scholar 

  5. Y. Rane, A. Altecor, N. S. Bell, and K. Lozano, J. Eng. Fibers Fabr., 8, 88 (2013).

    CAS  Google Scholar 

  6. B. Vazquez, H. Vasquez, and K. Lozano, Polym. Eng. Sci., 52, 2260 (2012).

    Article  CAS  Google Scholar 

  7. A. Altecor, K. Lozano, and Y. Mao, Funct. Mater. Lett., 05, 1250020 (2012).

    Article  CAS  Google Scholar 

  8. Z. McEachin and K. Lozano, J. Appl. Polym. Sci., 126, 473 (2012).

    Article  CAS  Google Scholar 

  9. S. Padron, R. Patlan, J. Gutierrez, N. Santos, T. Eubanks, and K. Lozano, J. Appl. Polym. Sci., 125, 3610 (2012).

    Article  CAS  Google Scholar 

  10. B. Raghavan, H. Soto, and K. Lozano, J. Eng. Fibers Fabr., 8, 52 (2013).

    CAS  Google Scholar 

  11. K. Madhavan Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol., 101, 8493 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Y. Furuhashi, Y. Kimura, and N. Yoshie, Polym. J., 38, 1061 (2006).

    Article  CAS  Google Scholar 

  13. T. J. Sill and H. A. von Recum, Biomaterials, 29, 1989 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Controlled Release, 92, 227 (2003).

    Article  CAS  Google Scholar 

  15. I. Canton, R. McKean, M. Charnley, K. A. Blackwood, C. Fiorica, A. J. Ryan, and S. MacNeil, Biotechnol. Bioeng., 105, 396 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. D. Li, M. W. Frey, and A. J. Baeumner, J. Membr. Sci., 279, 354 (2006).

    Article  CAS  Google Scholar 

  17. J. Liu, T. Wang, T. Uchida, and S. Kumar, J. Appl. Polym. Sci., 96, 1992 (2005).

    Article  CAS  Google Scholar 

  18. J. Ayutsede, M. Gandhi, S. Sukigara, H. Ye, C.-M. Hsu, Y. Gogotsi, and F. Ko, Biomacromolecules, 7, 208 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. M. Naebe, T. Lin, M. P. Staiger, L. Dai, and X. Wang, Nanotechnology, 19, 305702 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. C. Pan, L.-Q. Ge, and Z.-Z. Gu, Compos. Sci. Technol., 67, 3271 (2007).

    Article  CAS  Google Scholar 

  21. J. H. Sung, H. S. Kim, H.-J. Jin, H. J. Choi, and I.-J. Chin, Macromolecules, 37, 9899 (2004).

    Article  CAS  Google Scholar 

  22. K. Saeed, S.-Y. Park, H.-J. Lee, J.-B. Baek, and W.-S. Huh, Polymer, 47, 8019 (2006).

    Article  CAS  Google Scholar 

  23. R. Sen, B. Zhao, D. Perea, M. E. Itkis, H. Hu, J. Love, E. Bekyarova, and R. C. Haddon, Nano Lett., 4, 459 (2004).

    Article  CAS  Google Scholar 

  24. S. D. McCullen, K. L. Stano, D. R. Stevens, W. A. Roberts, N. A. Monteiro-Riviere, L. I. Clarke, and R. E. Gorga, J. Appl. Polym. Sci., 105, 1668 (2007).

    Article  CAS  Google Scholar 

  25. M. Chipara, K. Lozano, A. Hernandez, and M. Chipara, Polym. Degrad. Stabil., 93, 871 (2008).

    Article  CAS  Google Scholar 

  26. K. Lozano and E. Barrera, J. Appl. Polym. Sci., 79, 125 (2001).

    Article  CAS  Google Scholar 

  27. S. Yang, J. Rafael Castilleja, E. Barrera, and K. Lozano, Polym. Degrad. Stabil., 83, 383 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Lozano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patlan, R., Mejias, J., McEachin, Z. et al. Fabrication and Characterization of Poly(L-lactic Acid) Fiber Mats Using Centrifugal Spinning. Fibers Polym 19, 1271–1277 (2018). https://doi.org/10.1007/s12221-018-7063-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7063-0

Keywords

Navigation