Fibers and Polymers

, Volume 19, Issue 4, pp 767–774 | Cite as

Medical Waste Treatment via Waste Electrospinning of PS

  • Tuğba Isık
  • Mustafa M. DemirEmail author


Body fluid medical wastes are infectious clinical wastes (blood, saliva, urine) due to their high pathogenic content. Incineration is the most commonly used method in waste management that possess high water content along with molecularly dissolved species such as proteins. The process is costly; so that the removal of solid content dissolved in aqueous part by preliminary filtration can reduce the volume of the waste material. In this study, fibrous mats were prepared by electrospinning of PS wastes from DMF and THF solutions. Then they are employed in the removal of protein-based solid contents of body fluid medical wastes before their disposal. Two sources of PS waste (CD cover and Styrofoam) were employed along with virgin PS for comparison. The adsorption capacity of as-prepared electrospun fibers was examined for three model proteins: Bovine Serum Albumin (BSA), Myoglobin (MYO), and Trypsin (TRY). The fibers obtained from PS CD wastes have remarkably larger protein sorption capacities (particularly BSA) than the fibers obtained from virgin PS. XPS reveals the presence of CaCO3 domains in CD covers added into PS during their production steps probably to increase mechanical properties. There may be an electrostatic interaction between Ca2+ and the negatively charged groups of the protein. In this way, PS wastes could be converted to a beneficial secondary product by electrospinning and also resulting materials promises for the disposal of body fluid medical wastes. This may be one of the frontiers study on the removal of medical wastes by adsorbents produced via electrospinning of waste polymers.


CD case Medical waste Polystyrene Recycling Waste-electrospinning Waste PS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12221_2018_1037_MOESM1_ESM.pdf (1.3 mb)
Supplementary material, approximately 1309 KB.


  1. 1.
    H. Park, K. Lee, M. Kim, J. Lee, S. Y. Seong, and G. Ko, J. Environ. Sci. Heal. A, 44, 995 (2009).CrossRefGoogle Scholar
  2. 2.
    Y. Chartier, J. Emmanuel, U. Pieper, A. Prüss, P. Rushbrook, R. Stringer, W. Townend, S. Wilburn, and R. Zghondi, “Safe Management of Wastes from Health-care Activities”, World Health Organisation, 2014.Google Scholar
  3. 3.
    M. S. Hossain, N. N. N. Ab Rahman, V. Balakrishnan, V. R. Puvanesuaran, M. Z. I. Sarker, and M. O. Ab Kadir, Int. J. Environ. Res. Public Health, 10, 556 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    E. S. Windfeld and M. S. L. Brooks, J. Environ. Manage., 163, 98 (2015).CrossRefPubMedGoogle Scholar
  5. 5.
    WHO, “Safe Health-care Waste Management-policy Paper by the World Health Organization”, Waste Management 2005.Google Scholar
  6. 6.
    M. S. Hossain, N. A. N. Norulaini, A. A. Banana, A. R. M. Zulkhairi, A. Y. A. Naim, and A. K. M. Omar, Chem. Eng. J., 296, 173 (2016).CrossRefGoogle Scholar
  7. 7.
    W. Zhao, E. van der Voet, G. Huppes, and Y. F. Zhang, J. Life Cycle Assess., 14, 114 (2009).CrossRefGoogle Scholar
  8. 8.
    A. Pruss, E. Giroult, and P. Rushbrook, “Safe Management of Wastes from Healthcare Activities”, World Health Organization, Geneva, 1999.Google Scholar
  9. 9.
    W. A. Rutala and D. J. Weber, Infect. Control Hosp. Epidemiol., 31, 107 (2010).CrossRefPubMedGoogle Scholar
  10. 10.
    D. E. MacArthur, Science, 358, 843 (2017).CrossRefPubMedGoogle Scholar
  11. 11.
    J. M. Garcia, and M. L. Robertson, Science, 358, 870 (2017).CrossRefPubMedGoogle Scholar
  12. 12.
    Y. Zare, Waste Manage., 33, 598 (2013).CrossRefGoogle Scholar
  13. 13.
    N. Chaukura, W. Gwenzi, T. Bunhu, D. T. Ruziwa, and I. Pumure, Resour. Conserv. Recy., 107, 157 (2016).CrossRefGoogle Scholar
  14. 14.
    N. Chaukura, B. B. Mamba, and S. B. Mishra, J. Environ. Manage., 193, 280 (2017).CrossRefPubMedGoogle Scholar
  15. 15.
    G. L. Zhuang, H. H. Tseng, and M. Y. Wey, Chem. Eng. Res. Des., 111, 204 (2016).CrossRefGoogle Scholar
  16. 16.
    S. Gopi, P. Balakrishnan, A. Pius, and S. Thomas, Carbohydr. Polym., 165, 115 (2017).CrossRefPubMedGoogle Scholar
  17. 17.
    T. Isik, N. Horzum, U. H. Yildiz, B. Liedberg, and M. M. Demir, Macromol. Mater. Eng., 301, 827 (2016).CrossRefGoogle Scholar
  18. 18.
    L. F. Zhang, T. J. Menkhaus, and H. Fong, J. Membr. Sci., 319, 176 (2008).CrossRefGoogle Scholar
  19. 19.
    M. F. Leong, K. S. Chian, P. S. Mhaisalkar, W. F. Ong, and B. D. Ratner, J. Biomed. Mater. Res. Part A, 89A, 1040 (2009).CrossRefGoogle Scholar
  20. 20.
    H. T. Zhang, H. L. Nie, D. G. Yu, C. Y. Wu, Y. L. Zhang, C. J. B. White, and L. M. Zhu, Desalination, 256, 141 (2010).CrossRefGoogle Scholar
  21. 21.
    Z. W. Ma, M. Kotaki, and S. Ramakrishna, J. Membr. Sci., 265, 115 (2005).CrossRefGoogle Scholar
  22. 22.
    Y. Miyauchi, B. Ding, and S. Shiratori, Nanotechnology, 17, 5151 (2006).CrossRefGoogle Scholar
  23. 23.
    M. M. Demir, Express Polym. Lett., 4, 2 (2010).CrossRefGoogle Scholar
  24. 24.
    N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).CrossRefPubMedGoogle Scholar
  25. 25.
    A. K. Haridas, C. S. Sharma, V. Sritharan, and T. N. Rao, RSC Adv., 4, 12188 (2014).CrossRefGoogle Scholar
  26. 26.
    T. D. Fornes, P. J. Yoon, H. Keskkula, and D. R. Paul, Polymer, 42, 9929 (2001).CrossRefGoogle Scholar
  27. 27.
    X. L. Xie, Q. X. Liu, R. K. Y. Li, X. P. Zhou, Q. X. Zhang, Z. Z. Yu, and Y. W. Mai, Polymer, 45, 6665 (2004).CrossRefGoogle Scholar
  28. 28.
    M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, Polymer, 43, 3303 (2002).CrossRefGoogle Scholar
  29. 29.
    T. Isik, M. M. Demir, C. Aydogan, M. Ciftci, and Y. Yagci, J. Polym. Sci. Part A: Polym. Chem., 55, 1338 (2017).CrossRefGoogle Scholar
  30. 30.
    P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, Polymer, 46, 4799 (2005).CrossRefGoogle Scholar
  31. 31.
    C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nature Methods, 9, 671 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    M. M. Demir and G. Wegner, Macromol. Mater. Eng., 297, 838 (2012).CrossRefGoogle Scholar
  33. 33.
    C. M. Chan, J. S. Wu, J. X. Li, and Y. K. Cheung, Polymer, 43, 2981 (2002).CrossRefGoogle Scholar
  34. 34.
    J. Lima, S. R. Sousa, A. Ferreira, and M. A. Barbosa, J. Biomed. Mater. Res., 55, 45 (2001).CrossRefPubMedGoogle Scholar
  35. 35.
    H. Esfahani, M. P. Prabhakaran, E. Salahi, A. Tayebifard, M. Keyanpour-Rad, M. R. Rahimipour, and S. Ramakrishna, J. Colloid Interf. Sci., 443, 143 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineeringİzmir Institute of TechnologyUrlaTurkey

Personalised recommendations