Skip to main content
Log in

Mechanical and physical properties of puncture-resistance insole made of Kevlar® recycled selvages

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The polyester (PET) fibers and Kevlar® staple fibers, which are recycled from discarded selvages of PET and Kevlar® woven fabrics, are made into nonwoven fabrics using a needle-bonded process. The PET/Kevlar® nonwoven matrices are used as the surface layers, while a glass fiber woven fabric is used as the interlayer. The sandwich-structured composites are saturated with waterborne PU resin and then hot pressed, forming puncture resistant PU-reinforced PET/Kevlar® sandwiches. The sandwiches are evaluated in terms of the tensile property test, the bursting property test, the constant-rate puncture test, the dynamic puncture test, and the drop-weight impact test. The test results indicate that increasing the pick-up rate of PU resin can significantly improve all mechanical properties, suggesting that PU-reinforced PET/Kevlar® sandwiches have protective functions and make good candidate for insoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Q. Wang and Z. Yang, Environ. Pollut., 218, 358 (2016).

    Article  CAS  Google Scholar 

  2. C. E. Raptis, J. M. Boucher, and S. Pfister, Sci. Total Environ., 580, 1014 (2017).

    Article  CAS  Google Scholar 

  3. Z. Peng, C. Liu, B. Xu, H. Kan, and W. Wang, Sci. Total Environ., 580, 1483 (2017).

    Article  CAS  Google Scholar 

  4. T.-T. Li, R. Wang, C.-W. Lou, and J.-H. Lin, Compos. Pt. B-Eng., 59, 60 (2014).

    Article  CAS  Google Scholar 

  5. S. S. Ahmad, I. M. M. Mulyadi, N. Ibrahim, and A. R. Othman, Procedia Soc. Behav. Sci., 234, 525 (2016).

    Article  Google Scholar 

  6. H. Nguyen, V. Carvelli, T. Fujii, and K. Okubo, Constr. Build. Mater., 126, 321 (2016).

    Article  CAS  Google Scholar 

  7. M. Dizbay-Onat, U. K. Vaidya, and C. T. Lungu, Ind. Crop. Prod., 95, 583 (2017).

    Article  CAS  Google Scholar 

  8. P. A. Vo Dong, C. Azzaro-Pantel, M. Boix, L. Jacquemin, and S. Domenech in “Computer Aided Chemical Engineering” (J. K. H. Krist, V. Gernaey, and G. Rafiqul Eds.), p.2009, Elsevier, 2015.

  9. S. Geldart in “Comprehensive Materials Processing” (G. F. Batalha, C. J. V. Tyne, and B. Yilbas Eds.), p.177, Elsevier, Oxford, 2014.

  10. A. Vuorio, J. Stoop, and C. Johnson, Safety Sci., 95, 62 (2017).

    Article  Google Scholar 

  11. D. Firouzi, D. A. Foucher, and H. Bougherara, J. Appl. Polym. Sci., 131, n/a (2014).

  12. N. Mao, “High Performance Textiles and Their Applications”, p.91, Woodhead Publishing, 2014.

    Book  Google Scholar 

  13. S.-H. Lee, J.-H. Lee, S.-K. Cheong, and H. Noguchi, J. Mater. Process. Tech., 207, 21 (2008).

    Article  CAS  Google Scholar 

  14. J. Zhu, J. Njuguna, H. Abhyankar, H. Zhu, D. Perreux, F. Thiebaud, D. Chapelle, A. Pizzi, A. Sauget, A. de Larminat, and A. Nicollin, Ind. Crop. Prod., 50, 68 (2013).

    Article  CAS  Google Scholar 

  15. P. Davies, Y. Reaud, L. Dussud, and P. Woerther, Ocean Eng., 38, 2208 (2011).

    Article  Google Scholar 

  16. Y. Park, Y. Kim, A. H. Baluch, and C.-G. Kim, Int. J. Impact Eng., 72, 67 (2014).

    Article  Google Scholar 

  17. L. Liu, Y. D. Huang, Z. Q. Zhang, Z. X. Jiang, and L. N. Wu, Appl. Surf. Sci., 254, 2594 (2008).

    Article  CAS  Google Scholar 

  18. Y. Shindo, T. Takeda, and F. Narita, Cryogenics, 52, 564 (2012).

    Article  CAS  Google Scholar 

  19. E. E. Haro, J. A. Szpunar, and A. G. Odeshi, Compos. Pt. A-Appl. Sci. Manuf., 87, 54 (2016).

    Article  Google Scholar 

  20. A. N. Palazotto, E. J. Herup, and L. N. B. Gummadi, Compos. Struct., 49, 209 (2000).

    Article  Google Scholar 

  21. Y. Termonia, Int. J. Impact Eng., 32, 1512 (2006).

    Article  Google Scholar 

  22. S. Sengupta, S. N. Chattopadhyay, S. Samajpati, and A. Day, Indian J. Fibre. Text., 33, 37 (2008).

    CAS  Google Scholar 

  23. S. Michielsen, B. Pourdeyhimi, and P. Desai, J. Appl. Polym. Sci., 99, 2489 (2006).

    Article  CAS  Google Scholar 

  24. J. Wang, H. Gao, L. Ding, Y. Xie, B. Song, J. Ma, M. Lin, and R. Sun, Compos. Struct., 152, 800 (2016).

    Article  Google Scholar 

  25. A. Das, V. K. Kothari, A. Kumar, and M. S. Mehta, Fiber. Polym., 6, 313 (2005).

    Article  Google Scholar 

  26. J.-H. Lin, J.-C. Hsieh, W.-H. Hsing, Y.-J. Pan, C.-T. Hsieh, H.-J. Tan, J.-H. Li, and C.-W. Lou, Fiber. Polym., 17, 1955 (2016).

    Article  CAS  Google Scholar 

  27. X. Jin, W. Wang, L. Bian, C. Xiao, G. Zheng, and C. Zhou, Synth. Met., 161, 984 (2011).

    Article  CAS  Google Scholar 

  28. C. W. Lou, T. T. Li, J. Y. Lin, M. C. Lin, and J. H. Lin, Appl. Mech. Mate., 365-366, 1078 (2013).

    Article  Google Scholar 

  29. C. C. Lin, T. T. Li, C. W. Lou, J. Y. Lin, and J. H. Lin, Appl. Mech. Mate., 365-366, 1070 (2013).

    Article  Google Scholar 

  30. T. J. Kang, K. H. Hong, and M. R. Yoo, Fiber. Polym., 11, 719 (2010).

    Article  CAS  Google Scholar 

  31. H. R. Baharvandi, P. Khaksari, N. Kordani, M. Alebouyeh, M. Alizadeh, and J. Khojasteh, Fiber. Polym., 15, 2193 (2014).

    Article  CAS  Google Scholar 

  32. A. Majumdar, B. S. Butola, A. Srivastava, D. Bhattacharjee, I. Biswas, A. Laha, S. Arora, and A. Ghosh, Fiber. Polym., 17, 199 (2016).

    Article  CAS  Google Scholar 

  33. Y. Zhou, X. Gong, S. Zhang, and A. Xu, Fiber. Polym., 16, 2663 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, MC., Lou, CW., Lin, JY. et al. Mechanical and physical properties of puncture-resistance insole made of Kevlar® recycled selvages. Fibers Polym 18, 2219–2224 (2017). https://doi.org/10.1007/s12221-017-7615-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7615-8

Keywords

Navigation