Mechanical and physical properties of puncture-resistance insole made of Kevlar® recycled selvages

Abstract

The polyester (PET) fibers and Kevlar® staple fibers, which are recycled from discarded selvages of PET and Kevlar® woven fabrics, are made into nonwoven fabrics using a needle-bonded process. The PET/Kevlar® nonwoven matrices are used as the surface layers, while a glass fiber woven fabric is used as the interlayer. The sandwich-structured composites are saturated with waterborne PU resin and then hot pressed, forming puncture resistant PU-reinforced PET/Kevlar® sandwiches. The sandwiches are evaluated in terms of the tensile property test, the bursting property test, the constant-rate puncture test, the dynamic puncture test, and the drop-weight impact test. The test results indicate that increasing the pick-up rate of PU resin can significantly improve all mechanical properties, suggesting that PU-reinforced PET/Kevlar® sandwiches have protective functions and make good candidate for insoles.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Q. Wang and Z. Yang, Environ. Pollut., 218, 358 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    C. E. Raptis, J. M. Boucher, and S. Pfister, Sci. Total Environ., 580, 1014 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Z. Peng, C. Liu, B. Xu, H. Kan, and W. Wang, Sci. Total Environ., 580, 1483 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    T.-T. Li, R. Wang, C.-W. Lou, and J.-H. Lin, Compos. Pt. B-Eng., 59, 60 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    S. S. Ahmad, I. M. M. Mulyadi, N. Ibrahim, and A. R. Othman, Procedia Soc. Behav. Sci., 234, 525 (2016).

    Article  Google Scholar 

  6. 6.

    H. Nguyen, V. Carvelli, T. Fujii, and K. Okubo, Constr. Build. Mater., 126, 321 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    M. Dizbay-Onat, U. K. Vaidya, and C. T. Lungu, Ind. Crop. Prod., 95, 583 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    P. A. Vo Dong, C. Azzaro-Pantel, M. Boix, L. Jacquemin, and S. Domenech in “Computer Aided Chemical Engineering” (J. K. H. Krist, V. Gernaey, and G. Rafiqul Eds.), p.2009, Elsevier, 2015.

  9. 9.

    S. Geldart in “Comprehensive Materials Processing” (G. F. Batalha, C. J. V. Tyne, and B. Yilbas Eds.), p.177, Elsevier, Oxford, 2014.

  10. 10.

    A. Vuorio, J. Stoop, and C. Johnson, Safety Sci., 95, 62 (2017).

    Article  Google Scholar 

  11. 11.

    D. Firouzi, D. A. Foucher, and H. Bougherara, J. Appl. Polym. Sci., 131, n/a (2014).

  12. 12.

    N. Mao, “High Performance Textiles and Their Applications”, p.91, Woodhead Publishing, 2014.

    Google Scholar 

  13. 13.

    S.-H. Lee, J.-H. Lee, S.-K. Cheong, and H. Noguchi, J. Mater. Process. Tech., 207, 21 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    J. Zhu, J. Njuguna, H. Abhyankar, H. Zhu, D. Perreux, F. Thiebaud, D. Chapelle, A. Pizzi, A. Sauget, A. de Larminat, and A. Nicollin, Ind. Crop. Prod., 50, 68 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    P. Davies, Y. Reaud, L. Dussud, and P. Woerther, Ocean Eng., 38, 2208 (2011).

    Article  Google Scholar 

  16. 16.

    Y. Park, Y. Kim, A. H. Baluch, and C.-G. Kim, Int. J. Impact Eng., 72, 67 (2014).

    Article  Google Scholar 

  17. 17.

    L. Liu, Y. D. Huang, Z. Q. Zhang, Z. X. Jiang, and L. N. Wu, Appl. Surf. Sci., 254, 2594 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Shindo, T. Takeda, and F. Narita, Cryogenics, 52, 564 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    E. E. Haro, J. A. Szpunar, and A. G. Odeshi, Compos. Pt. A-Appl. Sci. Manuf., 87, 54 (2016).

    Article  Google Scholar 

  20. 20.

    A. N. Palazotto, E. J. Herup, and L. N. B. Gummadi, Compos. Struct., 49, 209 (2000).

    Article  Google Scholar 

  21. 21.

    Y. Termonia, Int. J. Impact Eng., 32, 1512 (2006).

    Article  Google Scholar 

  22. 22.

    S. Sengupta, S. N. Chattopadhyay, S. Samajpati, and A. Day, Indian J. Fibre. Text., 33, 37 (2008).

    CAS  Google Scholar 

  23. 23.

    S. Michielsen, B. Pourdeyhimi, and P. Desai, J. Appl. Polym. Sci., 99, 2489 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    J. Wang, H. Gao, L. Ding, Y. Xie, B. Song, J. Ma, M. Lin, and R. Sun, Compos. Struct., 152, 800 (2016).

    Article  Google Scholar 

  25. 25.

    A. Das, V. K. Kothari, A. Kumar, and M. S. Mehta, Fiber. Polym., 6, 313 (2005).

    Article  Google Scholar 

  26. 26.

    J.-H. Lin, J.-C. Hsieh, W.-H. Hsing, Y.-J. Pan, C.-T. Hsieh, H.-J. Tan, J.-H. Li, and C.-W. Lou, Fiber. Polym., 17, 1955 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    X. Jin, W. Wang, L. Bian, C. Xiao, G. Zheng, and C. Zhou, Synth. Met., 161, 984 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    C. W. Lou, T. T. Li, J. Y. Lin, M. C. Lin, and J. H. Lin, Appl. Mech. Mate., 365-366, 1078 (2013).

    Article  Google Scholar 

  29. 29.

    C. C. Lin, T. T. Li, C. W. Lou, J. Y. Lin, and J. H. Lin, Appl. Mech. Mate., 365-366, 1070 (2013).

    Article  Google Scholar 

  30. 30.

    T. J. Kang, K. H. Hong, and M. R. Yoo, Fiber. Polym., 11, 719 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    H. R. Baharvandi, P. Khaksari, N. Kordani, M. Alebouyeh, M. Alizadeh, and J. Khojasteh, Fiber. Polym., 15, 2193 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    A. Majumdar, B. S. Butola, A. Srivastava, D. Bhattacharjee, I. Biswas, A. Laha, S. Arora, and A. Ghosh, Fiber. Polym., 17, 199 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Y. Zhou, X. Gong, S. Zhang, and A. Xu, Fiber. Polym., 16, 2663 (2015).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, MC., Lou, CW., Lin, JY. et al. Mechanical and physical properties of puncture-resistance insole made of Kevlar® recycled selvages. Fibers Polym 18, 2219–2224 (2017). https://doi.org/10.1007/s12221-017-7615-8

Download citation

Keywords

  • Laminates
  • Fabrics
  • Mechanical properties
  • Damage mechanics
  • Mechanical testing