Skip to main content
Log in

High water content silk protein-based hydrogels with tunable elasticity fabricated via a Ru(II) mediated photochemical cross-linking method

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Silk is very promising in the field of biomaterials as a natural biomacromolecule. Silk protein can be made into various forms of materials, including hydrogels. However, silk protein-based hydrogels have not attracted much attention due to its weak mechanical properties. Here, we report high water content silk protein-based hydrogels with tunable elasticity which were fabricated through Ru(II) mediated photochemically cross-linking tyrosine residues in regenerated silk protein. The regenerated silk protein was characterized by Fourier transform infrared spectroscopy (FTIR). The gelation kinetics of the silk protein was studied by rheology measurements. The compressive mechanical properties of the silk protein-based hydrogels was investigated using compressive tests and dynamic mechanical analysis (DMA). Compressive modulus of the hydrogels reached 349±64 MPa at 15 % strain. The fabricated silk protein-based hydrogels were also characterized by Scanning electron microscopy (SEM), revealing an interconnected porous network structure, typical of hydrogels, with an average pore size of approximately 130 μm. Finally, biocompatibility of the silk protein-based hydrogels was demonstrated through cell culture studies using a human fibroblast cell line, HFL1. The reported silk protein-based hydrogels represent a promising candidate for biomaterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Arai, G. Freddi, R. Innocenti, and M. Tsukada, J. Appl. Polym. Sci., 91, 2383 (2004).

    Article  CAS  Google Scholar 

  2. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).

    Article  CAS  Google Scholar 

  3. A. Motta, C. Migliaresi, F. Faccioni, P. Torricelli, M. Fini, and R. Giardino, J. Biomater. Sci. Polym. Ed., 15, 851 (2004).

    Article  CAS  Google Scholar 

  4. V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, J. Biomed. Mater. Res. A, 71A, 528 (2004).

    Article  CAS  Google Scholar 

  5. K. Hu, Q. Lv, F. Z. Cui, Q. L. Feng, X. D. Kong, H. L. Wang, L. Y. Huang, and T. Li, J. Bioact. Compat. Polym., 21, 23 (2006).

    Article  Google Scholar 

  6. C. Li, C. Vepari, H. J. Jin, H. J. Kim, and D. L. Kaplan, Biomaterials, 27, 3115 (2006).

    Article  CAS  Google Scholar 

  7. C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007).

    Article  CAS  Google Scholar 

  8. P. H. G. Chao, S. Yodmuang, X. Q. Wang, L. Sun, D. L. Kaplan, and G. Vunjak-Novakovic, J. Biomed. Mater. Res. B Appl. Biomater., 95B, 84 (2010).

    Article  CAS  Google Scholar 

  9. K. Numata, M. R. Reagan, R. H. Goldstein, M. Rosenblatt, and D. L. Kaplan, Bioconjug. Chem., 22, 1605 (2011).

    Article  CAS  Google Scholar 

  10. M. Fini, A. Motta, P. Torricelli, G. Glavaresi, N. N. Aldini, M. Tschon, R. Giardino, and C. Migliaresi, Biomaterials, 26, 3527 (2005).

    Article  CAS  Google Scholar 

  11. H. Aoki, N. Tomita, Y. Morita, K. Hattori, Y. Harada, M. Sonobe, S. Wakitani, and Y. Tamada, Biomed. Mater. Eng., 13, 309 (2003).

    CAS  Google Scholar 

  12. X. Q. Wang, J. A. Kluge, G. G. Leisk, and D. L. Kaplan, Biomaterials, 29, 1054 (2008).

    Article  CAS  Google Scholar 

  13. J. Kundu, L. A. Poole-Warren, P. Martens, and S. C. Kundu, Acta Biomater., 8, 1720 (2012).

    Article  CAS  Google Scholar 

  14. E. M. Pritchard, X. Hu, V. Finley, C. K. Kuo, and D. L. Kaplan, Macromol. Biosci., 13, 311 (2013).

    Article  CAS  Google Scholar 

  15. T. Diab, E. M. Pritchard, B. A. Uhrig, J. D. Boerckel, D. L. Kaplan, and R. E. Guldberg, J. Mech. Behav. Biomed. Mater., 11, 123 (2012).

    Article  CAS  Google Scholar 

  16. G. G. Leisk, T. J. Lo, T. Yucel, Q. Lu, and D. L. Kaplan, Adv. Mater., 22, 711 (2010).

    Article  CAS  Google Scholar 

  17. C.-Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, Nucleic Acids Res., 28, 2413 (2000).

    Article  CAS  Google Scholar 

  18. Q. Lu, Y. L. Huang, M. Z. Li, B. Q. Zuo, S. Z. Lu, J. N. Wang, H. S. Zhu, and D. L. Kaplan, Acta Biomater., 7, 2394 (2011).

    Article  CAS  Google Scholar 

  19. B. B. Mandal, B. Ghosh, and S. C. Kundu, Int. J. Biol. Macromolec., 49, 125 (2011).

    Article  CAS  Google Scholar 

  20. B. B. Mandal, S. Kapoor, and S. C. Kundu, Biomaterials, 30, 2826 (2009).

    Article  CAS  Google Scholar 

  21. M. Z. Li, S. Z. Lu, Z. Y. Wu, K. Tan, N. Minoura, and S. Kuga, Int. J. Biol. Macromolec., 30, 89 (2002).

    Article  Google Scholar 

  22. Q. Lv, K. Hu, Q. Feng, and F. Cui, J. Biomed. Mater. Res. A, 84A, 198 (2008).

    Article  CAS  Google Scholar 

  23. C. Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z.-G. Li, and J. Janin, Proteins: Struct., Funct., Bioinf., 44, 119 (2001).

    Article  CAS  Google Scholar 

  24. L. P. Gage and R. F. Manning, J. Biol. Chem., 255, 9444 (1980).

    CAS  Google Scholar 

  25. U. J. Kim, J. Y. Park, C. M. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, Biomacromolecules, 5, 786 (2004).

    Article  CAS  Google Scholar 

  26. A. Matsumoto, J. Chen, A. L. Collette, U. J. Kim, G. H. Altman, P. Cebe, and D. L. Kaplan, J. Phys. Chem. B, 110, 21630 (2006).

    Article  CAS  Google Scholar 

  27. I. Karakutuk, F. Ak, and O. Okay, Biomacromolecules, 13, 1122 (2012).

    Article  CAS  Google Scholar 

  28. C. M. Elvin, A. G. Carr, M. G. Huson, J. M. Maxwell, R. D. Pearson, T. Vuocolo, N. E. Liyou, D. C. C. Wong, D. J. Merritt, and N. E. Dixon, Nature, 437, 999 (2005).

    Article  CAS  Google Scholar 

  29. S. Lv, D. M. Dudek, Y. Cao, M. M. Balamurali, J. Gosline, and H. Li, Nature, 465, 69 (2010).

    Article  CAS  Google Scholar 

  30. D. A. Fancy and T. Kodadek, Proc. Natl. Acad. Sci. USA, 96, 6020 (1999).

    Article  CAS  Google Scholar 

  31. H. Sinohara, Y. Asano, and A. Fukui, Biochim. Biophys. Acta, 237, 273 (1971).

    Article  CAS  Google Scholar 

  32. B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, Adv. Funct. Mater., 24, 4615 (2014).

    Article  CAS  Google Scholar 

  33. J. L. Whittaker, N. R. Choudhury, N. K. Dutta, and A. Zannettino, J. Mater. Chem. B, 2, 6259 (2014).

    Article  CAS  Google Scholar 

  34. J. L. Whittaker, N. K. Dutta, C. M. Elvin, and N. R. Choudhury, J. Mater. Chem. B, 3, 6576 (2015).

    Article  CAS  Google Scholar 

  35. H. Y. Wang and Y. Q. Zhang, Sci. Rep., 4, 6182 (2014).

    Article  CAS  Google Scholar 

  36. T. Yucel, N. Kojic, G. Leisk, T. Lo, and D. L. Kaplan, J. Struct. Biol., 170, 406 (2010).

    Article  CAS  Google Scholar 

  37. U. Kim, J. Park, C. Li, H. Jin, R. Valluzzi, and D. L. Kaplan, Biomacromolecules, 5, 786 (2004).

    Article  CAS  Google Scholar 

  38. S. Bai, X. Zhang, Q. Lu, W. Sheng, L. Liu, B. Dong, D. L. Kaplan, and H. Zhu, Biomacromolecules, 15, 3044 (2014).

    Article  CAS  Google Scholar 

  39. R. Jansson, N. Thatikonda, D. Lindberg, A. Rising, J. Johansson, P.-Å. Nygren, and M. Hedhammar, Biomacromolecules, 15, 1696 (2014).

    Article  CAS  Google Scholar 

  40. M. Kurisawa, J. E. Chung, Y. Y. Yang, S. J. Gao, and H. Uyama, Chem. Commun., 34, 4312 (2005).

    Article  Google Scholar 

  41. F. Lee, J. E. Chung, and M. Kurisawa, Soft Matter, 4, 880 (2008).

    Article  CAS  Google Scholar 

  42. A. A. Dinerman, J. Cappello, H. Ghandehari, and S. W. Hoag, Biomaterials, 23, 4203 (2002).

    Article  CAS  Google Scholar 

  43. M. Haider, V. Leung, F. Ferrari, J. Crissman, J. Powell, J. Cappello, and H. Ghandehari, Mol. Pharm., 2, 139 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baochang Sun or Shanshan Lyu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Peng, H., Sun, B. et al. High water content silk protein-based hydrogels with tunable elasticity fabricated via a Ru(II) mediated photochemical cross-linking method. Fibers Polym 18, 1831–1840 (2017). https://doi.org/10.1007/s12221-017-7463-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7463-6

Keywords

Navigation