Skip to main content
Log in

Water-stability and biological behavior of electrospun collagen/PEO fibers by environmental friendly crosslinking

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electronspun collagen fibers have to be crosslinked to improve their mechanical properties and water stability. But, the toxicity of some crosslinkers like glutaraldehyde have been fiercely debated. Others like genipin have been proved to affect the morphology of electrospinning fibers. Citric acid (CA) as a crosslinking agent has the advantages of simple, cheap and nontoxicity. In this paper, the effects of CA crosslinking on the physical and biological properties of electrospun collagen/polyethylene oxide (PEO) nanofibrous membranes were investigated and compared with dehydrothermal (DHT) crosslinking. Collagen/PEO fibers crosslinked by 10 wt% CA had at least 80 % higher crosslinking degree (p<0.05) and better water stability compared with DHT crosslinking (p<0.05). The stress of fibers crosslinked by CA (7.11±0.05 MPa) has been improved compared with non-crosslinked fibers (5.86±0.02 MPa). At the same time, the strain of non-crosslinked fibers was highest (10.90 %). The results of enzymatic (ED) and hydrolytic degradation (HD) of fibers showed crosslinking could improve the resistance of collagen/PEO nanofibers against ED and HD. The hemolytic percentages of fibers after crosslinking was below 5 %, which proved that CA could protect red cells from destroying. The results of cytotoxicity test showed fibers before and after crosslinking both had no cytotoxicity and that of animal acute test indicated membranes treated with DHT and CA had no apparent toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lee and A. Y. Singla, Int. J. Pharm., 221, 1 (2001).

    Article  CAS  Google Scholar 

  2. V. Y. Chakrapani, A. Gnanamani, V. R. Giridev, M. Madhusoothanan, and G. Sekaran, J. Appl. Polym. Sci., 125, 3221 (2012).

    Article  CAS  Google Scholar 

  3. Z. Chen, X. Mo, and F. Qing, Mater. Lett., 61, 3490 (2007).

    Article  CAS  Google Scholar 

  4. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 3, 232 (2002).

    Article  CAS  Google Scholar 

  5. Y. Shi, L. Rittman, and I. Vesely, Tissue Eng., 12, 2601 (2006).

    Article  CAS  Google Scholar 

  6. J. P. Chen, G. Y. Chang, and J. K. Chen, Colloid Surf. APhysicochem. Eng. Asp., 313, 254 (2008).

    Article  Google Scholar 

  7. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. B. Tan, Polymer, 42, 8163 (2001).

    Article  CAS  Google Scholar 

  8. D. Li, A. Babel, S. A. Jenekhe, and Y. Xia, Adv. Mater., 16, 2062 (2004).

    Article  CAS  Google Scholar 

  9. C. A. Fleck and R. Simman, J. Am. Coll. Certif. Wound. Spec., 2, 50 (2011).

    Google Scholar 

  10. G. Păunica-Panea, A. Ficai, M. M. Marin, Ș. Marin, M. G. Albu, V. D. Constantin, C. Dinu-Pîrvu, Z. Vuluga, M. C. Corobea, and M. V. Ghica, J. Nanomater., 2016, 1 (2016).

    Article  Google Scholar 

  11. G. Ramanathan, S. Singaravelu, M. D. Raja, and U. T. Sivagnanam, Micron, 78, 28 (2015).

    Article  CAS  Google Scholar 

  12. W. Li, R. Guo, Y. Lan, Y. Zhang, W. Xue, and Y. Zhang, J. Biomed. Mater. Res. A, 102, 1131 (2014).

    Article  Google Scholar 

  13. J. W. Drexler and H. M. Powell, Tissue Eng. C, 17, 9 (2011).

    Article  CAS  Google Scholar 

  14. M. G. Haugh, M. J. Jaasma, and F. J. O'Brien, J. Biomed. Mater. Res. A, 89A, 363 (2009).

    Article  CAS  Google Scholar 

  15. E. Marzec and K. Pietrucha, Biophys. Chem., 132, 89 (2008).

    Article  CAS  Google Scholar 

  16. I. V. Yannas and A. V. Tobolsky, Nature, 215, 509 (1967).

    Article  CAS  Google Scholar 

  17. G. P. Huang, S. Shanmugasundaram, P. Masih, D. Pandya, S. Amara, G. Collins, and T. L. Arinzeh, J. Biomed. Mater. Res. A, 103, 762 (2015).

    Article  Google Scholar 

  18. D. I. Zeugolis, S. T. Khew, E. S. Yew, A. K. Ekaputra, Y. W. Tong, L. Y. Yung, D. W. Hutmacher, C. Sheppard, and M. Raghunath, Biomaterials, 29, 2293 (2008).

    Article  CAS  Google Scholar 

  19. L. Yang, C. F. C. Fitié, K. O. V. D. Werf, M. L. Bennink, P. J. Dijkstra, and J. Feijen, Biomaterials, 29, 955 (2008).

    Article  CAS  Google Scholar 

  20. M. Mekhail, K. K. H. Wong, D. T. Padavan, Y. Wu, D. B. O'Gorman, and W. Wan, J. Biomaterials Sci-Polym. E., 22, 2241 (2011).

    Article  CAS  Google Scholar 

  21. C. Yang, B. Mater. Sci., 35, 913 (2012).

    Article  CAS  Google Scholar 

  22. K. Sisson, C. Zhang, M. C. Farachcarson, D. B. Chase, and J. F. Rabolt, Biomacromolecules, 10, 1675 (2009).

    Article  CAS  Google Scholar 

  23. N. Reddy and Y. Yang, Food Chem., 118, 702 (2010).

    Article  CAS  Google Scholar 

  24. C. Q. Yang and X. Wang, Text. Res. J., 66, 595 (1996).

    Article  CAS  Google Scholar 

  25. Q. Jiang, N. Reddy, S. Zhang, N. Roscioli, and Y. Yang, J. Biomed. Mater. Res. A, 101, 1237 (2013).

    Article  Google Scholar 

  26. A. P. Kishan, R. M. Nezarati, C. M. Radzicki, A. L. Renfro, J. L. Robinson, M. E. Whitely, and E. M. Cosgriffhernandez, J. Mater. Chem. B, 3, 7930 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Gao or Lu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Guo, H., Zhao, L. et al. Water-stability and biological behavior of electrospun collagen/PEO fibers by environmental friendly crosslinking. Fibers Polym 18, 1496–1503 (2017). https://doi.org/10.1007/s12221-017-7319-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7319-0

Keywords

Navigation