Skip to main content

Mechanical and moisture absorption characterization of PLA composites reinforced with nano-coated flax fibers

Abstract

This research is intended to improve the interface between the fibers and the matrix and limit water absorption of bio-based material thereby decreasing degradation of the composites when they are exposed to external environment such as high temperature and humidity. In this study, flax fibers were treated with an organic surface coating containing SiO2 nanoparticles. This coating was a dispersion of silica fume in epoxy. One composite was also made with raw fibers as reference as well as one sample of pure PLA. Flax fibers/PLA composites were manufactured by hot pressing by stacking 4 PLA films and 3 pieces of flax fabric. Morphology and dispersion of the coating on the fibers was observed by scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Accelerated ageing was carried out on the 3 materials by placing them in a 50 °C water bath until saturation to investigate the influence of the coating on water diffusion. Mechanical properties of the different composites were investigated by tensile (before and after conditioning) and short beam shear (SBS) testing in order to evaluate the impact of the coating on the interfacial properties of the materials. The results show that the fibers surface was homogenized and that a better adhesion was reached because of the coating. Coating the fibers also allowed the decrease in water uptake by more than 10 % and their protection during conditioning, preserving their mechanical properties.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. L. Kosbar, J. D. Gelorme, R. M. Japp, and W. T. Fotorny, J. Ind. Ecol., 4, 93 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    M. M. Davoodi, S. M. Sapuan, D. Ahmad, A. Ali, A. Khalina, and M. Jonoobi, Mater. Des., 31, 4927 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    K. Petersen, P. V. Nielsen, and M. B. Olsen, Starch-Stärke, 53, 356 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    K. Petersen, P. V. Nielsen, G. Bertelsen, M. Lawther, M. B. Olsen, N. H. Nilsson, and G. Mortensen, Trends Food Sci. Technol., 10, 52 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    J. Holbery and D. Houston, JOM, 58, 80 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    B. Dahlke, H. Larbig, H. D. Scherzer, and R. Poltrock, J. Cell. Plast., 34, 361 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Chen, O. Chiparus, L. Sun, I. Negulescu, D. V. Parikh, and T. A. Calamari, J. Ind. Text., 35, 47 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    D. V. Parikh, T. A. Calamari, A. P. S. Sawhney, E. J. Blanchard, F. J. Screen, J. C. Myatt, D. H. Muller, and D. D. Stryjewski, Text. Res. J., 72, 668 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    J. Andersons, E. Spārniņš, and R. Joffe, Polym. Compos., 27, 221 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, Compos. Pt. A-Appl. Sci. Manuf., 35, 371 (2004).

    Article  Google Scholar 

  11. 11.

    M. J. John and R. D. Anandjiwala, Polym. Compos., 29, 187 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, Compos. Sci. Technol., 61, 1437 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    D. N. Saheb and J. P. Jog, Adv. Polym. Technol., 18, 351 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    B. Bax and J. Müssig, Compos. Sci. Technol., 68, 1601 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, Mater. Des., 47, 424 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    A. C. Karmaker, J. Mater. Sci. Lett., 16, 462 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    M. S. Islam, K. L. Pickering, and N. J. Foreman, Polym. Degrad. Stabil., 95, 59 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    P. V. Joseph, M. S. Rabello, L. H. C. Mattoso, K. Joseph, and S. Thomas, Compos. Sci. Technol., 62, 1357 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    A. K. Bledzki, S. Reihmane, and J. Gassan, J. Appl. Polym. Sci., 59, 1329 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    A. K. Mohanty, M. Misra, and L. T. Drzal, Compos. Interfaces, 8, 313 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    S. Mukhopadhyay and R. Fangueiro, J. Thermoplast. Compos. Mater., 22, 135 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    S. Rizkalla, T. Hassan, and N. Hassan, Prog. Struct. Eng. Mater., 5, 16 (2003).

    Article  Google Scholar 

  23. 23.

    Mr. Foruzanmehr, P. Y. Vuillaume, M. Robert, and S. Elkoun, Mater. Des., 85, 671 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Mr. Foruzanmehr, L. Boulos, P. Y. Vuillaume, S. Elkoun, and M. Robert, Cellulose, doi:10.1007/s10570-016-1185-6, 1 (2017).

    Google Scholar 

  25. 25.

    Z. Torabi and A. Mohammadi Nafchi, J. Chem. Health Risks, 3, 33 (2013).

    Google Scholar 

  26. 26.

    R. Kumar, M. K. Yakabu, and R. D. Anandjiwala, Compos. Pt. A-Appl. Sci. Manuf., 41, 1620 (2010).

    Article  Google Scholar 

  27. 27.

    F. Gauvin, C. Richard, and M. Robert, Polym. Compos. doi:10.1002/pc.24097 (2016).

    Google Scholar 

  28. 28.

    G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M. E. Errico, Polym. Compos., 28, 98 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    R. L. Reddy, V. S. Reddy, and G. A. Gupta, Int. J. Emerg. Technol. Adv. Eng., 3, 76 (2013).

    Google Scholar 

  30. 30.

    M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, and E. Wintermantel, J. Appl. Polym. Sci., 90, 1731 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    Mr. Foruzanmehr, P. Y. Vuillaume, S. Elkoun, and M. Robert, Mater. Des., 106, 295 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    K. Oksman, M. Skrifvars, and J.-F. Selin, Compos. Sci. Technol., 63, 1317 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    C. D. Putnam, M. Hammel, G. L. Hura, and J. A. Tainer, Q. Rev. Biophys., 40, 191 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    A. Espert, F. Vilaplana, and S. Karlsson, Compos. Pt. AAppl. Sci. Manuf., 35, 1267 (2004).

    Article  Google Scholar 

  35. 35.

    A. G. Kikhney and D. I. Svergun, FEBS Lett., 589, 2570 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    M. Nyman and L. Fullmer, in “Trends Polyoxometalates Research” (L. Ruhlmann and D. Schaming Eds.), pp.151–170, Nova Science Publishers Inc., 2015.

    Google Scholar 

  37. 37.

    A. S. Herrmann, J. Nickel, and U. Riedel, Polym. Degrad. Stabil., 59, 251 (1998).

    CAS  Article  Google Scholar 

  38. 38.

    C. L. Wu, M. Q. Zhang, M. Z. Rong, and K. Friedrich, Compos. Sci. Technol., 62, 1327 (2002).

    CAS  Article  Google Scholar 

  39. 39.

    L. Boulos, M. Reza Foruzanmehr, A. Tagnit-Hamou, S. Elkoun, and M. Robert, Surf. Coat. Technol., doi:10.1016/j.biortech.2007.12.073 (2017).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mathieu Robert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayart, M., Gauvin, F., Foruzanmehr, M.R. et al. Mechanical and moisture absorption characterization of PLA composites reinforced with nano-coated flax fibers. Fibers Polym 18, 1288–1295 (2017). https://doi.org/10.1007/s12221-017-7123-x

Download citation

Keywords

  • Natural fibers coating
  • Polylactic acid
  • Green composites
  • Interface
  • Water absorption