Skip to main content
Log in

Enzymatic treatment on cotton fibers: degradation kinetics of pectin and influence of shape change on adsorption

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Alkaline pectinase was one of the most effective enzymes to treat cotton as alternative agent to replace the conventional alkaline method. Removal of pectin and cutin was considered the explanation for improvement of wettability as well as water adsorption on cotton fiber. However, degradation kinetics of pectin is unclear, and the influence of fiber shape on property changes after enzymatic treatment was ignored. The main objective of this work was to reveal interactions between pectinase and cotton fiber for mechanism study. A heterogeneous catalysis kinetic equation, which is associated with Langmuir adsorption model and enzyme deactivation, was used to describe the heterogeneous catalysis. The enzymatic process conditions were optimized. Raw cotton fibers, pectinase-treated and alkali-treated fibers were characterized by impurities content determination, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). Mechanism of water adsorption enhancement on treated fibers was discussed. In addition to elimination of the outer impurities, flat fibers with less twist and shape changes of lumen were also obtained to ensure better accessibility and water adsorption after enzymatic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Hao, R. Wang, L. Wang, K. Fang, J. Liu, and Y. Men, Cellulose, 1, 929 (2015).

    Google Scholar 

  2. C. Vigneswaran, M. Ananthasubramanian, N. Anbumani, and P. Kandhavadivu, J. Eng. Fiber Fabr., 2, 121 (2013).

    Google Scholar 

  3. A. Mittal, K. Rui, M. E. Himmel, and D. K. Johnson, Biotechnol. Biofuels, 64, 1 (2011).

    Google Scholar 

  4. Z. Gao, M. Di, X. Zhang, and D. Zhang, Bioresources, 4, (2014).

  5. M. K. Traore and G. Buschle-Diller, Text. Chem. Color Am. D., 12, 40 (2000).

    Google Scholar 

  6. N. Špicka, Ž. Zupin,_J. Kovac, and P. E. F. Tavcer, Fiber. Polym., 8, 1723 (2015).

    Google Scholar 

  7. Y. Yu, J. Yuan, Q. Wang, X. Fan, and P. Wang, Fiber. Polym., 5, 932 (2014).

    Article  Google Scholar 

  8. S. N. Sreelakshmi, N. S. Vasanthi, and D. Saravanan, J. Text. Inst., 104, 1118 (2013).

    Article  CAS  Google Scholar 

  9. P. B. Agrawal, P. B. Agrawal, V. A. Nierstrasz, G. H. Bouwhuis, and M. M. C. G. Warmoeskerken, Biocatal. Biotransfor., 5, 412 (2009).

    Google Scholar 

  10. S. Kalantzi, D. Mamma, E. Kalogeris, and D. Kekos, Fibres Text. East. Eur., 5, 86 (2010).

    Google Scholar 

  11. L. Michaelis and M. L. Menten, Biochemische Zeitschrift, 333, 333 (1913).

    Google Scholar 

  12. J. Shen and F. A. Agblevor, Chem. Eng. Commun., 9, 1107 (2008).

    Article  Google Scholar 

  13. H. A. Ruiz, A. A. Vicente, and J. A. Teixeira, Ind. Crop. Prod., 1, 100 (2012).

    Article  Google Scholar 

  14. J. M. Neto, D. D. R. Garcia, S. M. G. Rueda, and A. C. D. Costa, Bioproc. Biosyst. Eng., 11, 1579 (2013).

    Article  Google Scholar 

  15. M. Joshi, M. Nerurkar, P. Badhe, and R. Adivarekar, J. Mol. Catal B-Enzym., 106 (2013).

  16. S. Kalantzi, D. Mamma, P. Christakopoulos, and D. Kekos, Bioresour. Technol., 17, 8185 (2008).

    Article  Google Scholar 

  17. V. G. Yachmenev, N. R. Bertoniere, and E. J. Blanchard, Text. Res. J., 6, 527 (2001).

    Article  Google Scholar 

  18. M. Mettilda, Menaka, V. Subramaniam, and B. Kothandaraman, J. Eng. Fiber Fabr., 4, 69 (2014).

    Google Scholar 

  19. X. Hua, K. Wang, R. Yang, J. Kang, and J. Zhang, Food Hydrocolloid, 44, 122 (2015).

    Article  CAS  Google Scholar 

  20. L. Phatak, K. C. Chang, and G. Brown, J. Food Sci., 3, 830 (1988).

    Article  Google Scholar 

  21. The United States Pharmacopeial Convention. Cotton. United States Pharmacopoeia 35. Rockville, MD, USA: United States Pharmacopeial Convention Inc., p.286, 2010.

  22. R. Hu, L. Lin, T. Liu, P. Ouyang, B. He, and S. Liu, J. Biobased Mater. Bio., 2, 156 (2008).

    Article  Google Scholar 

  23. M. Calafell and P. Garriga, Enzyme Microb. Tech., 3-4, 326 (2004).

    Article  Google Scholar 

  24. S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Biotechnol Biofuels, 2, 103 (2010).

    Google Scholar 

  25. N. Abidi, E. Hequet, and L. Cabrales, Cellulose, 1, 153 (2010).

    Article  Google Scholar 

  26. C. Caparrós, N. Lant, J. Smets, and A. Cavaco-Paulo, Biocatal Biotransfor, 2, 260 (2012).

    Article  Google Scholar 

  27. M. Andlar, I. Rezic, D. Oros, D. Kracher, R. Ludwig, T. Rezic, and B. Šantek, J. Chem. Technol. Biot., 3, 623 (2017).

    Article  Google Scholar 

  28. N. Gharat and V. K. Rathod, Ultrason Sonochem., 3, 900 (2012).

    Google Scholar 

  29. Z. A. Raza, A. Rehman, M. T. Hussain, R. Masood, A. U. Haq, M. T. Saddique, A. Javid, and N. Ahmad, Carbohydr. Res., 1, 97 (2014).

    Article  Google Scholar 

  30. H. Zhao, J. H. Kwak, Z. C. Zhang, H. M. Brown, B. W. Arey, and J. E. Holladay, Carbohydr. Polym., 2, 235 (2007).

    Article  Google Scholar 

  31. S. R. Bansode, M. A. Hardikar, and V. K. Rathod, J. Chem. Technol. Biot., 6, 1306 (2017).

    Article  Google Scholar 

  32. M. Montazer and A. Sadighi, J. Appl. Polym. Sci., 6, 5049 (2006).

    Article  Google Scholar 

  33. K. Mazeau and M. Wyszomirski, Cellulose, 19, 1495 (2012).

    Article  CAS  Google Scholar 

  34. P. Sae-be, U. Sangwatanaroj, and H. Punnapayak, Biotechnol. J., 3, 316 (2007).

    Article  Google Scholar 

  35. O. Harzallah, H. Benzina, and J. Y. Drean, Text. Res. J., 11, 1093 (2010).

    Article  Google Scholar 

  36. C. H. Haigler, L. Betancur, M. R. Stiff, and J. R. Tuttle, Front Plant. Sci., 104 (2012).

  37. C. J. Knill and J. F. Kennedy, Carbohydr. Polym., 3, 281 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Li, T., Wang, C. et al. Enzymatic treatment on cotton fibers: degradation kinetics of pectin and influence of shape change on adsorption. Fibers Polym 18, 1882–1890 (2017). https://doi.org/10.1007/s12221-017-7045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7045-7

Keywords

Navigation