Skip to main content
Log in

An investigation on the comparison of wet spinning and electrospinning: Experimentation and simulation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polysulfonamide (PSA) has been widely used in many fields because of its excellent thermodynamic properties. In this study, PSA fibers were prepared separately via two different spinning ways, including conventional wet spinning and electrospinning. Fluid motion of wet spinning and electrostatic field of electrospinning were modeled using finite element analysis to investigate the spinning process. The properties of fabricated PSA fibers were characterized systematically by scanning electron microscope (SEM), fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), thermal gravity analysis (TGA) and electronic strength tester. Based on the simulation and theoretical analysis of spinning process, it was found that the extruding force of the wet spinning is larger than that of the electrospinning. The larger extruding force makes the alignment of macromolecules inside fiber relatively uniform, and a higher proportion of crystallization happens. Accordingly, the mechanical properties and thermal stability of PSA fibers could be improved due to a higher proportion of crystallization. The experimental results of mechanical strength and TG test are coincided with the simulation results. PSA fiber prepared by wet spinning has better thermal stability and mechanical properties than that fabricated by electrospinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Xin, Z. M. Chen, and X. J. Wu, Fiber. Text. East. Eur., 21, 24 (2013).

    CAS  Google Scholar 

  2. W. J. Chen, B. J. Xin, and X. J. Wu, J. Ind. Text., 44, 159 (2013).

    Google Scholar 

  3. Z. M. Chen, B. J. Xin, X. J. Wu, X. F. Wang, and W. P. Du, Fiber. Text. East. Eur., 20, 21 (2012).

    CAS  Google Scholar 

  4. L. Rayleigh, Lon. Edin. Dub. Phil. Mag. J. Sci., 14, 184 (1882).

    Article  Google Scholar 

  5. H. Kiyohiko, U. S. Patent, 1699615 (1929).

    Google Scholar 

  6. F. R. S. G. Taylor, Proce Roy Soc. Lon. Mathem. Phys. Sci., 280, 383 (1964).

    Article  Google Scholar 

  7. H. S. Simons, U. S. Patent, 3280229 (1996).

    Google Scholar 

  8. B. Chu, B. S. Chu, and D. Fang, U. S. Patent, 6713011 (2004).

    Google Scholar 

  9. D. J. Smith, D. H. Reneker, A. T. Mcmanus, H. L. Schreuder-Gibson, C. Mello, and M. S. Sennett, U. S. Patent, 6753454 (2004).

    Google Scholar 

  10. R. Purwar, K. S. Goutham, and C. M. Srivastava, Fiber. Polym., 17, 1206 (2016).

    Article  CAS  Google Scholar 

  11. H. Zernetsch, A. Repanas, T. Rittinghaus, M. Mueller, I. Alfred, and B. Glasmacher, Fiber. Polym., 17, 1025 (2016).

    Article  CAS  Google Scholar 

  12. A. Yabuki and I. W. Fathona, Fiber. Polym., 17, 1238 (2016).

    Article  Google Scholar 

  13. G. J. Jiang, S. Zhang, and X. H. Qin, Mater. Lett., 106, 56 (2013).

    Article  CAS  Google Scholar 

  14. J. N. Zhang, M. Y. Song, D. W. Li, Z. P. Yang, J. H. Cao, Y. Chen, Y. Xu, and Q. F. Wei, Fiber. Polym., 17, 1414 (2016).

    Article  CAS  Google Scholar 

  15. O. Bonhomme, J. Leng, and A. Colin, Soft. Matt., 8, 10641 (2012).

    Article  CAS  Google Scholar 

  16. S. Xie and Y. Zeng, Ind. Eng. Chem. Res., 51, 5336 (2012).

    Article  CAS  Google Scholar 

  17. M. M. Demir, MS Thesis, SU, Istanbul, 2001.

    Google Scholar 

  18. H. J. Cho, Y. J. Yoo, J. W. Kim, Y. H. Park, D. G. Bae, and I. C. Um, Polym. Degrad. Stabil., 97, 1060 (2012).

    Article  CAS  Google Scholar 

  19. P. Dayal and T. Kyu, J. Appl. Phys., 100, 043512 (2006).

    Article  Google Scholar 

  20. P. Dayal, A. J. Guenthnner, and T. Kyu, J. Polym. Sci., 45, 429 (2007).

    Article  CAS  Google Scholar 

  21. P. Dayal and T. Kyu, Phys. Fluids, 19, 363 (2007).

    Article  Google Scholar 

  22. R. I. Tanner, J. Non-Newt. Fluid. Mecha., 129, 85 (2005).

    Article  CAS  Google Scholar 

  23. C. C. Hu, L. Chen, R. X. Gu, J. R. Yu, J. Zhu, and Z. M. Hu, Synth. Fiber. Ind., 35, 16 (2012).

    Google Scholar 

  24. H. M. Lee, S. K. Mahapatra, J. K. Anthony, F. Rotermund, and C. K. Kim, Synth. Mater. Aging. Appl., 44, 3731 (2009).

    CAS  Google Scholar 

  25. X. G. Dong, Ph. D. Dissertation, SDU, Jinan, 2009.

    Google Scholar 

  26. T. D. Fornes and D. R. Paul, Polymer, 44, 3945 (2003).

    Article  CAS  Google Scholar 

  27. S. A. Theron, E. Zussman, and A. L. Yarin, Polymer, 45, 2017 (2004).

    Article  CAS  Google Scholar 

  28. B. Cramariuc, R. Cramariuc, R. Scarlet, L. R. Manea, I. G. Lupu, and O. Cramariuc, J. Electr., 71, 189 (2013).

    Article  CAS  Google Scholar 

  29. Y. F. Han, X. F. Liu, and M. F. Zhu, Mater. Sci. Forum., 789, 142 (2014).

    Article  Google Scholar 

  30. M. Tascan, J. Eng. Fiber Fabr., 9, 165 (2014).

    Google Scholar 

  31. H. T. Wang, K. Wang, C. Q. Li, and L. H. Xu, J. Beijing Univ. Chem. Tech., 37, 73 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Chen, Z., Xin, B. et al. An investigation on the comparison of wet spinning and electrospinning: Experimentation and simulation. Fibers Polym 18, 1160–1170 (2017). https://doi.org/10.1007/s12221-017-7026-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7026-x

Keywords

Navigation