Fibers and Polymers

, Volume 18, Issue 3, pp 445–452 | Cite as

Alternative cleaning of compost leachate using biopolymer chitosan

  • Marjana Simonič
  • Julija Volmajer Valh
  • Simona Vajnhandl
  • Silvo Hribernik
  • Manja Kurečič
  • Lidija Fras Zemljič
Article
  • 48 Downloads

Abstract

Compost leachate poses a threat to the environment because it contains many organic and inorganic pollutants. Chemical Oxygen Demand (COD) has been reported at values above 5000 mg/l O2. Heavy metals, such as nickel, lead, chromium are also present within these waters. Thus, in order to comply with the increasingly stringent environmental quality standards such contaminants must be removed effectively. The research approach in this paper is directed towards chelating pre-treatment procedures. Nontoxic and biodegradable biopolymer chitosan was used as a chelator for the removal of dissolved metals from compost leachate. The influence of chemical conditions regarding the chelation efficiency was studied in model solutions. The optimal treatment conditions were applied onto compost leachate which was analysed further regarding metals. In addition, the influence of chitosan was studied on compost leachate toxicity. The most important aspect of this paper is to demonstrate the potential of waste chitosan recycling. Thus, the chitosan chelates were subjected to the electrospinning procedure in order to develop new nano-porous structures, such as, for example, conductive textiles.

Keywords

Compost leachate Biopolymer chitosan Metal removal Toxicity Waste recycling Electrospinning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gagnaire, L. Chapon, P. Moulin, and B. Marrot, J. Ind. Eng. Chem., 18, 1522 (2012).CrossRefGoogle Scholar
  2. 2.
    A. J. Savage and S. F. Tyrrel, Biores. Technol., 96, 557 (2005).CrossRefGoogle Scholar
  3. 3.
    K. Brown, A. J. Ghoshdastidar, J. Hanmore, J. Frazee, and A. Z. Tong, Waste. Manage., 33, 2188 (2013).CrossRefGoogle Scholar
  4. 4.
    I. Gräber, J. F. Hansen, S. E. Olesen, J. Petersen, H. S. Østergaard, L. Krogh, and G. Tidsskrift, Dan J. Geography, 105, 15 (2005).CrossRefGoogle Scholar
  5. 5.
    S. F. Tyrrel, I. Seymour, and J. A. Harris, Biores. Technol., 99, 7657 (2008).CrossRefGoogle Scholar
  6. 6.
    M. Benavente, “Adsorption of Metallic Ions onto Chitosan: Equilibrium and Kinetic Studies”, Licentiate Thesis, Sweden, 2008.Google Scholar
  7. 7.
    R. Bassi, S. O. Prasher, and B. K. Simpson, Separ. Sci. Technol., 3, 547 (2000).CrossRefGoogle Scholar
  8. 8.
    L. Fras Zemljič, T. Ristić, and T. Tkavc, J. Eng. Fiber. Fabr., 7, 50 (2012).Google Scholar
  9. 9.
    S. Bailey, J. Trudy, R. Olin, M. Bricka, and D. Dean Adrian, Water. Res., 33, 2469 (1999).CrossRefGoogle Scholar
  10. 10.
    A. Greiner and J. H. Wendorff, Nagewandte Chem., 46, 5670 (2007).Google Scholar
  11. 11.
    M. T. Hunley and T. E. Long, Polym. Int., 57, 385 (2008).CrossRefGoogle Scholar
  12. 12.
    C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Macromol., 37, 573 (2004).CrossRefGoogle Scholar
  13. 13.
    ISO 11348-2:2007, Water Quality. Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test). Part 2: Method Using Liquid-dried Bacteria, 2007.Google Scholar
  14. 14.
    [ISO 6341/1996, Water Quality. Determination of the Inhibition of the Mobility of Daphnia Magna Straus (Cladocera, Crustacea) -Acute Toxicity Test, 1996.Google Scholar
  15. 15.
    P. Su, W. Changjun, V. Xianyan, C. Xiaoyi, G. Changyou, C. Xin-Xing, C. Jian-Yong, Y. Juan, and G. Zhongru Carbohydr. Polym., 84, 239 (2011).CrossRefGoogle Scholar
  16. 16.
    Official Gazette of Republic of Slovenia, No64/2012, Decree on the Substance and Heat Emission in the Wastewater Discharge into Recipient and Public Sewage System, 2012.Google Scholar
  17. 17.
    T. Genko, L. F. Zemljič, M. Bračič, K. Stana-Kleinschek, and T. Heinze, Macromol. Chem. Phys., 213, 539 (2012).CrossRefGoogle Scholar
  18. 18.
    S. Malamis and E. Katsou, J. Hazard. Mater., 252-253, 428 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Marjana Simonič
    • 3
  • Julija Volmajer Valh
    • 1
  • Simona Vajnhandl
    • 1
  • Silvo Hribernik
    • 2
  • Manja Kurečič
    • 2
  • Lidija Fras Zemljič
    • 2
  1. 1.Institute of Engineering Materials and Design, Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  2. 2.Department of Textile Materials and Design, Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  3. 3.Department of Water Biophysics and Membrane processes, Faculty of Chemistry and Chemical EngineeringUniversity of MariborMariborSlovenia

Personalised recommendations