Fibers and Polymers

, Volume 18, Issue 2, pp 253–263 | Cite as

Fabrication and characterization of porous cellulose acetate films by breath figure incorporated with capric acid as form-stable phase change materials for storing/retrieving thermal energy

  • Jin Zhang
  • Yibing Cai
  • Xuebin Hou
  • Cong Huang
  • Hui Qiao
  • Qufu Wei
Article

Abstract

Porous cellulose acetate (CA) films by breath figure (BF) incorporated with capric acid as form-stable phase change materials (PCMs) were fabricated and characterized for storing and retrieving thermal energy. Effects of different solvents, CA concentration and film thickness on morphology, microstructure and thermal energy storage property of formstable PCMs were investigated by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer and differential scanning calorimetry (DSC), respectively. The results indicated that the prepared CA films were porous with DMF, acetone, and dichloromethane (DCM) as the solvents, and capric acid absorption capacity was as high as 86.9, 75.0 and 82.2 % with the specific surface area of 4.8, 2.8 and 1.8 m2/g. Moreover, porous CA film with 5 % CA concentration and 0.5 mm thickness prepared by using DMF as solvent had larger specific surface area and higher thermal energy storage properties. The fabricated form-stable PCMs could well maintain their PCM characteristics and demonstrated great temperature regulation ability and had potential applications in building energy conservation.

Keywords

Porous cellulose acetate (CA) film Breath figure Capric acid Form-stable phase change materials (PCMs) Thermal energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Khudhair and M. M. Farid, Energy Conver. Manage., 45, 263 (2004).CrossRefGoogle Scholar
  2. 2.
    M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, Energy Conver. Manage., 45, 1597 (2004).CrossRefGoogle Scholar
  3. 3.
    F. Agyenim, N. Hewitt, P. Eames, and M. Smyth, Renew. Sust. Energy Rev., 14, 615 (2010).CrossRefGoogle Scholar
  4. 4.
    B. Zalba, J. M. Mari´n, L. F. Cabeza, and H. Mehling, Appl. Therm. Eng., 23, 251 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Seifpoor, M. Nouri, and J. Mokhtari, Fiber. Polym., 12, 706 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Renew. Sust. Energy Rev., 13, 318 (2009).CrossRefGoogle Scholar
  7. 7.
    W. Su, J. Darkwa, and G. Kokogiannakis, Renew. Sust. Energy Rev., 48, 373 (2015).CrossRefGoogle Scholar
  8. 8.
    R. K. Sharma, P. Ganesan, V. V. Tyagi, H. S. C. Metselaar, and S. C. Sandaran, Energy Conver. Manage., 95, 193 (2015).CrossRefGoogle Scholar
  9. 9.
    Z. Zhou, Z. Zhang, J. Zuo, K. Huang, and L. Zhang, Renew. Sust. Energy Rev., 48, 692 (2015).CrossRefGoogle Scholar
  10. 10.
    P. A. Mirzaei and F. Haghighat, Renew. Sust. Energy Rev., 16, 5355 (2012).CrossRefGoogle Scholar
  11. 11.
    P. Zhao, Q. Y. Yue, H. T. He, B. Y. Gao, Y. Wang, and Q. Li, Appl. Energy, 115, 483 (2014).CrossRefGoogle Scholar
  12. 12.
    N. Zhang, Y. P. Yuan, X. Wang, X. L. Cao, X. J. Yang, and S. C. Hu, Chem. Eng. J., 231, 214 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. B. Cai, X. L. Xu, C. T. Gao, L. Wang, Q. F. Wei, L. Song, Y. Hu, H. Qiao, Y. Zhao, Q. Chen, and H. Fong, Fiber. Polym., 13, 837 (2012).CrossRefGoogle Scholar
  14. 14.
    H. Z. Ke, Fiber. Polym., 17, 1198 (2016).CrossRefGoogle Scholar
  15. 15.
    Y. P. Yuan, N. Zhang, W. Q. Tao, X. L. Cao, and Y. L. He, Renew. Sust. Energy Rev., 29, 482 (2014).CrossRefGoogle Scholar
  16. 16.
    X. J. Yang, Y. P. Yuan, N. Zhang, X. L. Cao, and C. Liu, Sol. Energy, 99, 259 (2014).CrossRefGoogle Scholar
  17. 17.
    D. D. Mei, B. Zhang, R. C. Liu, H. Q. Zhang, and J. D. Liu, Int. J. Energy Res., 35, 828 (2011).CrossRefGoogle Scholar
  18. 18.
    H. Z. Ke, D. W. Li, H. D. Zhang, X. L. Wang, Y. B. Cai, F. L. Huang, and Q. F. Wei, Fiber. Polym., 14, 89 (2013).CrossRefGoogle Scholar
  19. 19.
    L. J. Wang and D. Meng, Appl. Energy, 87, 2660 (2010).CrossRefGoogle Scholar
  20. 20.
    C. Alkan and A. Sari, Sol. Energy, 82, 118 (2008).CrossRefGoogle Scholar
  21. 21.
    Y. Wang, T. D. Xia, H. X. Feng, and H. Zhang, Renew. Energy, 36, 1814 (2011).CrossRefGoogle Scholar
  22. 22.
    K. Pielichowska, S. Glowinkowski, J. Lekki, D. Binias, K. Pielichowski, and J. Jenczyk, Eur. Polym. J., 44, 3344 (2008).CrossRefGoogle Scholar
  23. 23.
    K. Pielichowski and K. Flejtuch, Polym. Adv. Technol., 16, 127 (2005).CrossRefGoogle Scholar
  24. 24.
    L. S. Wan, J. W. Li, B. B. Ke, and Z. K. Xu, J. Am. Chem. Soc., 134, 95 (2011).CrossRefGoogle Scholar
  25. 25.
    Y. Zhang and C. Wang, Adv. Mater., 19, 913 (2007).CrossRefGoogle Scholar
  26. 26.
    H. Yabu and M. Shimomura, Langmuir, 21, 1709 (2005).CrossRefGoogle Scholar
  27. 27.
    B. C. Englert, S. Scholz, P. J. Leech, M. Srinivasarao, and U. H. F. Bunz, Chemistry, 11, 995 (2005).CrossRefGoogle Scholar
  28. 28.
    H. Sun, H. L. Li, and L. X. Wu, Polymer, 50, 2113 (2009).CrossRefGoogle Scholar
  29. 29.
    U. H. F. Bunz, Adv. Mater., 18, 973 (2006).CrossRefGoogle Scholar
  30. 30.
    M. Stenzel, C. Kowollik, and T. Davis, J. Polym. Sci. Part A: Polym. Chem., 44, 2363 (2006).CrossRefGoogle Scholar
  31. 31.
    P. Escalé, L. Rubatat, L. Billon, and M. Save, Eur. Polym. J., 48, 1001 (2012).CrossRefGoogle Scholar
  32. 32.
    Y. Y. Dou, M. L. Jin, G. F. Zhou, and L. L. Shui, Membranes, 5, 399 (2013).CrossRefGoogle Scholar
  33. 33.
    F. Tang, D. Su, Y. J. Tang, and G. Y. Fang, Sol. Energy Mater. & Sol. Cells, 141, 218 (2015).CrossRefGoogle Scholar
  34. 34.
    C. Liu, Y. P. Yuan, N. Zhang, and X. L. Cao, Mater. Lett., 120, 43 (2014).CrossRefGoogle Scholar
  35. 35.
    N. Sarier, E. Onder, S. Ozay, and Y. Ozkilic, Thermochim. Acta, 524, 39 (2011).CrossRefGoogle Scholar
  36. 36.
    Y. B. Cai, M. M. Liu, X. F. Song, and J. Zhang, RSC Adv., 5, 84245 (2015).CrossRefGoogle Scholar
  37. 37.
    Y. B. Cai, G. Y. Sun, M. M. Liu, and J. Zhang, Sol. Energy, 118, 87 (2015).CrossRefGoogle Scholar
  38. 38.
    X. Zong, Y. B. Cai, G. Y. Sun, and Y. Zhao, Sol. Energy Mater. Sol. Cells, 132, 183 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jin Zhang
    • 1
    • 2
  • Yibing Cai
    • 1
  • Xuebin Hou
    • 1
    • 2
  • Cong Huang
    • 1
    • 2
  • Hui Qiao
    • 1
  • Qufu Wei
    • 1
  1. 1.Key Laboratory of Eco-textiles, Ministry of EducationJiangnan UniversityWuxiP. R. China
  2. 2.College of Textile and ClothingJiangnan UniversityWuxiP. R. China

Personalised recommendations