Fibers and Polymers

, Volume 18, Issue 4, pp 611–618 | Cite as

Thermal, swelling and stability kinetics of chitosan based semi-interpenetrating network hydrogels

  • Muhammad Omer Aijaz
  • Sajjad Haider
  • Fahad S. Al-Mubaddel
  • Rawaiz Khan
  • Adnan Haider
  • Abdulaziz Abdullah Alghyamah
  • Waheed A. Almasry
  • Mohammad Sherjeel Javed Khan
  • Muhammad Javid
  • Wajahat Ur Rehman
Article
  • 103 Downloads

Abstract

The present study is focused on studying the swelling kinetics, thermal and aqueous stabilities, and determination of various forms of water in the chitosan (CS) and polyacrylonitrile (PAN) blend and semi-interpenetrating polymer network (sIPN). CS/PAN blend hydrogel films were prepared by solution casting technique. The blend film with optimum swelling properties was selected for the synthesis of sIPN. CS in the blend was crosslinked with the vapors of Glutaraldehyde (GTA) to prepare sIPN. The fabricated CS/PAN blend and sIPN hydrogels films were characterized with Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA) and field emission scanning electron microscope (FESEM). The kinetics of swelling, bound and unbound waters and aqueous stability were determined experimentally. FESEM showed good miscibility between CS and PAN, FTIR showed no chemical interaction between CS and PAN; however, it did show a doublet for the sIPN, TGA showed improved thermal stability and swelling kinetic followed second order kinetics. The degree of swelling of the sIPN hydrogels samples at room temperature varied from ~2200 % (with a fair degree of stability (~30 %)) to ~1000 % (with high degree of aqueous stability (43 %)) with increase in the crosslinking time. The calculated unbound water (WUB) max., for the blend was 52.3 % whereas for the bound (WB) the max., was 41.9 %. However, for sIPN hydrogel films, the WUB water decreased (max. 21.0 %) where as the WB increased (max. 52.0 %). The decrease in WUB and increase in the WB is attributed to the formation of a compact structure and increase in the contact area between the water and polymers in sIPN hydrogels due to the induction of new water contacting point in these hydrogel films, respectively.

Keywords

Chitosan Crosslinking sIPN hydrogel Swelling kinetics Bound and unbound water Thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Pó, J. Macromol. Sci., Part C, 34, 607 (1994).Google Scholar
  2. 2.
    H. Warson, Polym. Int., 49, 1548 (2000).CrossRefGoogle Scholar
  3. 3.
    N. A. Peppas and A. R. Khare, Adv. Drug Deliv. Rev., 11, 1 (1993).CrossRefGoogle Scholar
  4. 4.
    D. Kim and K. Park, Polymer, 45, 189 (2004).CrossRefGoogle Scholar
  5. 5.
    J. Yang, J. Chen, D. Pan, Y. Wan, and Z. Wang, Carbohydr. Polym., 92, 719 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Chaterji, I. K. Kwon, and K. Park, Prog. Polym. Sci., 32, 1083 (2007).CrossRefGoogle Scholar
  7. 7.
    E. S. Dragan, A. I. Cocarta, and M. Gierszewska, Colloid Surf. B-Biointerfaces, 139, 33 (2016).CrossRefGoogle Scholar
  8. 8.
    N. Bhattarai, J. Gunn, and M. Zhang, Adv. Drug. Deliv. Rev., 62, 83 (2010).CrossRefGoogle Scholar
  9. 9.
    H. Saito, A. Sakurai, M. Sakakibara, and H. Saga, J. Appl. Polym. Sci. 90, 3020 (2003).CrossRefGoogle Scholar
  10. 10.
    D. S. Franklin and S. Guhanathan, Iran. Polym. J., 23, 809 (2014).CrossRefGoogle Scholar
  11. 11.
    S. J. Kim, S. G. Yoon, K. B. Lee, Y. D. Park, and S. I. Kim, Solid State Ion., 164, 199 (2003).CrossRefGoogle Scholar
  12. 12.
    M. Mucha, React. Funct. Polym., 38, 19 (1998).CrossRefGoogle Scholar
  13. 13.
    A. Sionkowska, M. Wisniewski, J. Skopinska, C. J. Kennedy, and T. J. Wess, Biomaterials, 25, 795 (2004).CrossRefGoogle Scholar
  14. 14.
    M. Jafarkhani, A. Fazlali, F. Moztarzadeh, and M. Mozafari, Iran. Polym. J., 21, 713 (2012).CrossRefGoogle Scholar
  15. 15.
    D. K. Singh and A. R. Ray, J. Appl. Polym. Sci. 66, 869 (1997).CrossRefGoogle Scholar
  16. 16.
    S. Yoshikawa, T. Takayama, and N. Tsubokawa, J. Appl. Polym. Sci. 68, 1883 (1998).CrossRefGoogle Scholar
  17. 17.
    V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves, and R. L. Reis, Mater. Sci. Eng., A, 403, 57 (2005).CrossRefGoogle Scholar
  18. 18.
    D. K. Kweon and D. W. Kang, J. Appl. Polym. Sci. 74, 458 (1999).CrossRefGoogle Scholar
  19. 19.
    M. Zhang, X. H. Li, Y. D. Gong, N. M. Zhao, and X. F. Zhang, Biomaterials, 23, 2641 (2002).CrossRefGoogle Scholar
  20. 20.
    E. Jain and A. Kumar, J. Biomater. Sci. Polym. Ed., 20, 877 (2009).CrossRefGoogle Scholar
  21. 21.
    S. C. Angadi, L. S. Manjeshwar, and T. M. Aminabhavi, Int. J. Biol. Macromol., 47, 171 (2010).CrossRefGoogle Scholar
  22. 22.
    E. S. Dragan, Chem. Eng. J., 243, 572 (2014).CrossRefGoogle Scholar
  23. 23.
    E. A. El-Hefian, M. M. Nasef, and A. H. Yahaya, J. Chem. Soc. Pak, 36, 11 (2014).Google Scholar
  24. 24.
    F. S. Al-Mubaddel, S. Haider, M. O. Aijaz, A. Haider, T. Kamal, W. A. Almasry, M. Javid, and S. U.-D. Khan, Polym. Bull., 1 (2016).Google Scholar
  25. 25.
    J. D. Schiffman and C. L. Schauer, Biomacromolecules, 8, 594 (2007).CrossRefGoogle Scholar
  26. 26.
    J. L. Vondran, W. Sun, and C. L. Schauer, J. Appl. Polym. Sci. 109, 968 (2008).CrossRefGoogle Scholar
  27. 27.
    V. R. Patel and M. M. Amiji, Pharm. Res., 13, 588 (1996).CrossRefGoogle Scholar
  28. 28.
    S. J. Kim, S. R. Shin, Y. M. Lee, and S. I. Kim, J. Appl. Polym. Sci. 87, 2011 (2003).CrossRefGoogle Scholar
  29. 29.
    A. V. Korobeinyk, R. L. D. Whitby, and S. V. Mikhalovsky, Eur. Polym. J., 48, 97 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Khalid, F. Agnely, N. Yagoubi, J. Grossiord, and G. Couarraze, Eur. J. Pharm. Sci., 15, 425 (2002).CrossRefGoogle Scholar
  31. 31.
    R. Tripathi and B. Mishra, AAPS Pharm. Sci. Technol., 13, 1091 (2012).CrossRefGoogle Scholar
  32. 32.
    P. M. D. L. Torre, Y. Enobakhare, G. Torrado, and S. Torrado, Biomaterials, 24, 1499 (2003).CrossRefGoogle Scholar
  33. 33.
    S. Haider, S.-Y. Park, and S.-H. Lee, Soft Matter, 4, 485 (2008).CrossRefGoogle Scholar
  34. 34.
    X. Qu, A. Wirsén, and A. C. Albertsson, Polymer, 41, 4589 (2000).CrossRefGoogle Scholar
  35. 35.
    H. Hatakeyama and T. Hatakeyama, Thermochim. Acta, 308, 3 (1998).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Muhammad Omer Aijaz
    • 1
  • Sajjad Haider
    • 2
  • Fahad S. Al-Mubaddel
    • 2
  • Rawaiz Khan
    • 2
  • Adnan Haider
    • 3
  • Abdulaziz Abdullah Alghyamah
    • 2
  • Waheed A. Almasry
    • 2
  • Mohammad Sherjeel Javed Khan
    • 4
  • Muhammad Javid
    • 5
  • Wajahat Ur Rehman
    • 6
  1. 1.Center of Excellence for Research in Engineering Materials, Advance Manufacturing InstituteKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Chemical Engineering, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Nano, Medical and Polymer Materials, College of EngineeringYeungnam UniversityGyeongsanKorea
  4. 4.Department of ChemistryKyungpook National UniversityDaeguKorea
  5. 5.Chemistry Division PAEC IslamabadIslamabadPakistan
  6. 6.Department of Chemical EngineeringUETKPK PeshawarPakistan

Personalised recommendations