Skip to main content
Log in

Characterization of the surface properties of cellulosic fibers in fibrous and ground forms by IGC and contact angle measurements

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Surface properties of fibrous and ground cotton and linen were investigated by inverse gas chromatography (IGC) and the contact angle with different liquids was also measured on fabrics composed of both fibers. Results proved that dispersion component of surface tension (γ s d) determined by IGC depends not only on the surface energy, but also on several factors influencing the adsorbability of probe molecules on the cellulosic substrates. For cotton samples, the trapping of n-alkanes among waxy molecules in the outer layer of fibers can be presumed. This effect results in larger γ s d for cotton fibers than for linen in spite of the higher wettability of the linen fabrics. Besides the surface energy and trapping effects, the grinding also influences the γ s d values. Specific enthalpy of adsorption (ΔH ab A ) of polar probes could be determined on all linen samples, but only on the ground cotton sample. Lewis acid-base character calculated for linen and ground cotton samples depends on the same effects as the γ s d does. The similar ΔH A ab values of chloroform (acidic) and THF (basic) measured on each of the samples support the conclusion that the surface character is amphoteric, which is also proved by the high ΔH ab A values of the amphoteric ethyl acetate and acetone probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, Progr. Polym. Sci., 37, 1552 (2012).

    Article  CAS  Google Scholar 

  2. E. Papirer, E. Brendle, H. Balard, and C. Vergelati, J. Adhes. Sci. Technol., 14, 321 (2000).

    Article  CAS  Google Scholar 

  3. E. Cantergiani and D. Benczedi, J. Chromatogr. A, 969, 103 (2002).

    Article  CAS  Google Scholar 

  4. P. Jandura, B. Riedl, and B. V. Kokta, J. Chromatogr. A, 969, 301 (2002).

    Article  CAS  Google Scholar 

  5. G. Buschle-Diller, M. K. Inglesby, and Y. Wu, Colloid Surf. A-Physicochem. Eng. Asp., 260, 63 (2005).

    Article  CAS  Google Scholar 

  6. B. A. P. Ass, M. N. Belgacem, and E. Frollini, Carbohydr. Polym., 63, 19 (2006).

    Article  CAS  Google Scholar 

  7. X. Ren and G. Buschle-Diller, Colloid Surf. A-Physicochem. Eng. Asp., 299, 15 (2007).

    Article  CAS  Google Scholar 

  8. N. Rjiba, M. Nardin, J.-Y. Drean, and R. Frydrych, J. Colloid Interface Sci., 314, 373 (2007).

    Article  CAS  Google Scholar 

  9. J. Y. Y. Heng, D. F. Pearse, F. Thielmann, T. Lampke, and A. Bismarck, Compos. Interfaces, 14, 581 (2007).

    Article  CAS  Google Scholar 

  10. N. Rjiba, M. Nardin, J.-Y. Drean, and R. Frydrych, J. Polym. Res., 17, 25 (2010).

    Article  CAS  Google Scholar 

  11. L. Zhao and Y. Boluk, Appl. Surf. Sci., 257, 180 (2010).

    Article  CAS  Google Scholar 

  12. N. Cordeiro, C. Gouveia, and M. J. John, Ind. Crops Prod., 33, 108 (2011).

    Article  CAS  Google Scholar 

  13. N. Cordeiro, C. Gouveia, A. G. O. Moraes, and S. C. Amico, Carbohydr. Polym., 84, 110 (2011).

    Article  CAS  Google Scholar 

  14. N. Cordeiro, C. Mendonca, L. A. Pothan, and A. Varma, Carbohydr. Polym., 88, 125 (2012).

    Article  CAS  Google Scholar 

  15. E. S. Abdel-Halim, Carbohydr. Polym., 88, 1201 (2012).

    Article  CAS  Google Scholar 

  16. J. A. F. Gamelas, Cellulose, 20, 2675 (2013).

    Article  CAS  Google Scholar 

  17. S. Mohammadi-Jam and K. E. Waters, Adv. Colloid Interface Sci., 212, 21 (2014).

    Article  CAS  Google Scholar 

  18. M. N. Belgacem, G. Czeremuszkin, S. Sapieha, and A. Gandini, Cellulose, 2, 145 (1995).

    Article  CAS  Google Scholar 

  19. J. A. Trejo-O'Reilly, J. Y. Cavaille, N. M. Belgacem, and A. Gandini, J. Adhes., 67, 359 (1998).

    Article  Google Scholar 

  20. E. Csiszar and E. Fekete, Text. Res. J., 80, 1307 (2010).

    Article  CAS  Google Scholar 

  21. E. Csiszar and E. Fekete, Langmuir, 27, 8444 (2011).

    Article  CAS  Google Scholar 

  22. E. Csiszar, E. Fekete, A. Toth, E. Bandi, B. Koczka, and I. Sajo, Carbohydr. Polym., 94, 927 (2013).

    Article  CAS  Google Scholar 

  23. J. A. F. Gamelas, E. Ferraz, and F. Rocha, Colloids Surf., A, 455, 49 (2014).

    Article  CAS  Google Scholar 

  24. J. R. Conder and C. L. Young, “Physicochemical Measurement by Gas Chromatography”, Wiley, Chichester, 1979.

    Google Scholar 

  25. F. M. Fowkes, Ind. Eng. Chem., 56, 40 (1964).

    Article  CAS  Google Scholar 

  26. J. Schultz, L. Lavielle, and C. Martin, J. Adhes., 23, 45 (1987).

    Article  CAS  Google Scholar 

  27. G. M. Dorris and D. G. Gray, J. Colloid Interface Sci., 77, 353 (1980).

    Article  CAS  Google Scholar 

  28. E. Fekete, J. Móczó, and B. Pukánszky, J. Colloid Interface Sci., 269, 143 (2004).

    Article  CAS  Google Scholar 

  29. A. Voelkel, B. Strzemiecka, K. Adamska, and K. Milczewska, J. Chromatogr. A, 1216, 1551 (2009).

    Article  CAS  Google Scholar 

  30. R. S. Drago and B. B. Wayland, J. Am. Chem. Soc., 87, 3571 (1965).

    Article  CAS  Google Scholar 

  31. V. Gutmann, “The Donor-Acceptor Approach to Molecular Interactions”, Plenum, New York, 1978.

    Book  Google Scholar 

  32. F. L. Riddle and F. M. Fowkes, J. Am. Chem. Soc., 112, 3259 (1990).

    Article  CAS  Google Scholar 

  33. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969).

    Article  CAS  Google Scholar 

  34. H. L. Lee and P. Luner, J. Colloid Interface Sci., 146, 195 (1991).

    Article  CAS  Google Scholar 

  35. N. E. Zafeiropoulos, D. R. Williams, C. A. Baillie, and F. L. Matthews, Compos. Pt. A-Appl. Sci. Manuf., 33, 1083 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Fekete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekete, E., Csiszár, E. Characterization of the surface properties of cellulosic fibers in fibrous and ground forms by IGC and contact angle measurements. Fibers Polym 18, 1255–1262 (2017). https://doi.org/10.1007/s12221-017-6862-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6862-z

Keywords

Navigation