Skip to main content
Log in

Effect of calcium carbonate nanoparticles on barrier properties and biodegradability of polylactic acid

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, the effect of calcium carbonate (CaCO3) nanoparticles on the barrier properties and biodegradability of polylactic acid (PLA) was investigated. For this purpose, nanocomposite films with various CaCO3 nanoparticle contents (0, 3, 5, 10, and 15 wt%) were prepared by solution casting method. The gas permeability of nitrogen (N2), oxygen (O2), and carbon dioxide (CO2) was evaluated through a constant volume and variable pressure apparatus at different pressures and temperatures. According to results, barrier properties were improved by loading CaCO3 nanoparticles up to 5 wt%, and the gas permeability of CO2, O2, and N2 was decreased from 1.4, 0.31, and 0.07 Barrer to 0.48, 0.095, and 0.019 Barrer, respectively. In addition, it was also observed that the gas permeability of samples was decreased by increasing feeding pressure and increased by enhancing temperature. Furthermore, morphological results confirmed the formation of agglomerations and large clusters over 5 wt% CaCO3 nanoparticles. Finally, the thermal properties and biodegradability of PLA were increased by employing CaCO3 nanoparticles. These results suggested PLA nanocomposites as favorable candidates for food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004).

    Article  CAS  Google Scholar 

  2. V. Siracusa, I. Blanco, S. Romani, U. Tylewicz, P. Rocculi, and M. D. Rosa, J. Appl. Polym. Sci., 125, E390 (2012).

    Article  CAS  Google Scholar 

  3. N. Peelman, P. Ragaert, A. Vandemoortele, E. Verguldt, B. De Meulenaer, and F. Devlieghere, Innov. Food Sci. Emerg., 26, 319 (2014).

    Article  CAS  Google Scholar 

  4. M. Boufarguine, A. Guinault, G. Miquelard-Garnier, and C. Sollogoub, Macromol. Mater. Eng., 298, 1065 (2013).

    CAS  Google Scholar 

  5. F. T. M. N. Nadia Abbas Ali, Chem. Mater. Res., 6 (2014).

  6. R. Auras, B. Harte, and S. Selke, “Society of Plastics Engineers Annual Technical”, Boston, MA, United States, 2016.

    Google Scholar 

  7. G. Bang and S. W. Kim, J. Ind. Eng. Chem., 18, 1063 (2012).

    Article  CAS  Google Scholar 

  8. S. K. Pankaj, C. Bueno-Ferrer, N. N. Misra, L. O'Neill, A. Jiménez, P. Bourke, and P. J. Cullen, Innov. Food Sci. Emerg., 21, 107 (2014).

    Article  Google Scholar 

  9. L. Bao, J. R. Dorgan, D. Knauss, S. Hait, N. S. Oliveira, and I. M. Maruccho, J. Membr. Sci., 285, 166 (2006).

    Article  CAS  Google Scholar 

  10. R. A. Auras, B. Harte, S. Selke, and R. Hernandez, J. Plast. Film Sheet., 19, 123 (2003).

    Article  CAS  Google Scholar 

  11. L. Han, Y. Qin, D. Liu, H. Chen, H. Li, and M. Yuan, Innov. Food Sci. Emerg., 29, 288 (2015).

    Article  CAS  Google Scholar 

  12. S. Sinha Ray, K. Yamada, M. Okamoto, and K. Ueda, Nano Lett., 2, 1093 (2002).

    Article  Google Scholar 

  13. A. J. Svagan, A. Akesson, M. Cardenas, S. Bulut, J. C. Knudsen, J. Risbo, and D. Plackett, Biomacromolecules, 13, 397 (2012).

    Article  CAS  Google Scholar 

  14. P. G. W. F. Byrne, D. Hughes, J. Cullen, and D. P. Dowling, “Proceedings of the IMF Conference, Waterford Institute of Technology”, Ireland, 2013.

    Google Scholar 

  15. F. Byrne, P. Ward, D. Hughes, J. Cullen, and D. Dowling, “Proceedings of the IMF Conference, Waterford Institute of Technology”, Ireland, 2013.

    Google Scholar 

  16. J. Ren, “Biodegradable Poly(lactic acid): Synthesis, Modification, Processing and Applications”, Springer Science & Business Media, New York, 2011.

    Book  Google Scholar 

  17. R. Green, and D. Kunnermann, “PLA-A Renewable/Sustainable Packaging Option”, Cincinnati, 2006.

    Google Scholar 

  18. A. Conte, D. Longano, C. Costa, N. Ditaranto, A. Ancona, N. Cioffi, C. Scrocco, L. Sabbatini, F. Contò, and M. A. Del Nobile, Innov. Food Sci. Emerg., 19, 158 (2013).

    Article  CAS  Google Scholar 

  19. T. V. Duncan, J. Colloid Interf. Sci., 363, 1 (2011).

    Article  CAS  Google Scholar 

  20. O. Piringer, R. Franz, M. Huber, T. H. Begley, and T. P. McNeal, J. Agr. Food Chem., 46, 1532 (1998).

    Article  CAS  Google Scholar 

  21. A. R. Allafi and M. A. Pascall, Innov. Food Sci. Emerg., 20, 276 (2013).

    Article  CAS  Google Scholar 

  22. A. Emamifar, M. Kadivar, M. Shahedi, and S. Soleimanian-Zad, Innov. Food Sci. Emerg., 11, 742 (2010).

    Article  CAS  Google Scholar 

  23. Z. Ayhan, S. Cimmino, O. Esturk, D. Duraccio, M. Pezzuto, and C. Silvestre, Packag. Technol. Sci., 28, 589 (2015).

    Article  CAS  Google Scholar 

  24. A. Agarwal, A. Raheja, T. S. Natarajan, and T. S. Chandra, Innov. Food Sci. Emerg., 26, 424 (2014).

    Article  CAS  Google Scholar 

  25. J. Bott, A. Störmer, and R. Franz, Food Packaging and Shelf Life, 2, 73 (2014).

    Article  Google Scholar 

  26. C. S. Reig, A. D. Lopez, M. H. Ramos, and V. A. C. Ballester, Packag. Technol. Sci., 27, 839 (2014).

    Article  CAS  Google Scholar 

  27. R. Avolio, G. Gentile, M. Avella, C. Carfagna, and M. E. Errico, Eur. Polym. J., 49, 419 (2013).

    Article  CAS  Google Scholar 

  28. M. Avella, G. Bruno, M. E. Errico, G. Gentile, N. Piciocchi, A. Sorrentino, and M. G. Volpe, Packag. Technol. Sci., 20, 325 (2007).

    Article  CAS  Google Scholar 

  29. B. Nekhamanurak, P. Patanathabutr, and N. Hongsriphan, Plast., Rubber Compos., 41, 175 (2012).

    Article  CAS  Google Scholar 

  30. Y. Nekhamanurak, P. Patanathabutr, and N. Hongsriphan, International Journal of Applied Physics and Mathematics, 2, 98 (2012).

    Article  CAS  Google Scholar 

  31. A. K. Ganguli, T. Ahmad, S. Vaidya, and J. Ahmed, Pure Appl. Chem., 80, 2451 (2008).

    Article  CAS  Google Scholar 

  32. A. J. R. Lasprilla, G. A. R. Martinez, and B. Hoss, Chem. Eng., 24, 985 (2011).

    Google Scholar 

  33. R. Al-Itry, K. Lamnawar, and A. Maazouz, Polym. Degrad. Stabil., 97, 1898 (2012).

    Article  CAS  Google Scholar 

  34. X. Wang, W. Tong, W. Li, H. Huang, J. Yang, and G. Li, Polym. Bull., 57, 953 (2006).

    Article  CAS  Google Scholar 

  35. Y. Qin, J. Yang, M. Yuan, J. Xue, J. Chao, Y. Wu, and M. Yuan, J. Appl. Polym. Sci., 131 (2014).

  36. J. Wang, D. Ryan, E. J. Anthony, N. Wildgust, and T. Aiken, Energy Procedia, 4, 3071 (2011).

    Article  CAS  Google Scholar 

  37. Y. M. Lee, D. Bourgeois, and G. Belfort, J. Membr. Sci., 44, 161 (1989).

    Article  CAS  Google Scholar 

  38. S. Zeman and L. Kubík, Techn. Sc. doi:10.2478/v10022-007-0004-6 (2007).

    Google Scholar 

  39. B. Xing and J. J. Pignatello, Environ. Sci. Technol., 31, 792 (1997).

    Article  CAS  Google Scholar 

  40. G. Ozkoc and S. Kemaloglu, J. Appl. Polym. Sci., 114, 2481 (2009).

    Article  CAS  Google Scholar 

  41. K. Das, D. Ray, I. Banerjee, N. R. Bandyopadhyay, S. Sengupta, A. K. Mohanty, and M. Misra, J. Appl. Polym. Sci., 118, 143 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Heidarian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aframehr, W.M., Molki, B., Heidarian, P. et al. Effect of calcium carbonate nanoparticles on barrier properties and biodegradability of polylactic acid. Fibers Polym 18, 2041–2048 (2017). https://doi.org/10.1007/s12221-017-6853-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6853-0

Keywords

Navigation