Fibers and Polymers

, Volume 18, Issue 4, pp 633–640 | Cite as

Development of amino acid-modified PET/PA6 segmented pie bicomponent spunbonded microfiber nonwoven for bilirubin affinity adsorption

  • Xianlin Xu
  • Fang Zhang
  • Wei Wang
  • Nan Li
  • Xupin Zhuang
  • Hang Wang
  • Lei Shi
Article
  • 82 Downloads

Abstract

A novel affinity membrane based on PET/PA6 segmented pie bicomponent spunbonded microfiber nonwoven (PET/PA6 SBSNW) was developed for bilirubin adsorption. PET/PA6 SBSNW was initially fabricated as microfiber nonwoven fabric, and was then ammoniated with ethylenediamine (ETDA). Finally, amino acids as affinity ligands were immobilized on the ammoniated PET/PA6 SBSNW. The amino acid-modified PET/PA6 SBSNW was applied to adsorb bilirubin, and the effects of pH, temperature, species of affinity ligands, and time were investigated. The results showed that amino acid-modified PET/PA6 SBSNW has decent adsorption performance, and adsorption capacity of PET/PA6 SBSNW-Lys peaked at 388.35 mg/g.

Keywords

Segmented pie bicomponent spunbonded nonwoven Microfibers Amino acids Bilirubin Affinity adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Stocker, Y. Yamamoto, A. F. Mcdonagh, A. N. Glazer, and B. N. Ames, Science, 235, 1043 (1987).CrossRefGoogle Scholar
  2. 2.
    A. Denizli, M. Kocakulak, and E. Piskin, J. Chromatogr. B. Biomed. Sci. Appl., 707, 25 (1998).CrossRefGoogle Scholar
  3. 3.
    X. X. Zhu, G. R. Brown, and L. E. Stpierre, Biomater. Artif. Cells. Artif. Organs., 18, 75 (1990).CrossRefGoogle Scholar
  4. 4.
    Y. Idezuki, M. Hamaguchi, S. Hamabe, H. Moriya, T. Nagashima, H. Watanabe, T. Sonoda, K. Teramoto, T. Kikuchi, and H. Tanzawa, T. Am. Soc. Art. Int. Org., 27, 428 (1981).Google Scholar
  5. 5.
    Z. Yamazaki, N. Inoue, T. Wada, T. Oda, K. Atsumi, K. Kataoka, and Y. Fujisaki, T. Am. Soc. Art. Int. Org., 25, 480 (1979).CrossRefGoogle Scholar
  6. 6.
    T. Morimoto, M. Matsushima, N. Sowa, K. Ide, and K. Sawanishi, Artif. Organs, 13, 447 (1989).CrossRefGoogle Scholar
  7. 7.
    M. E. Avramescu, W. F. C. Sager, Z. Borneman, and M. Wessling, J. Chromatogr. B., 803, 215 (2004).CrossRefGoogle Scholar
  8. 8.
    Y. Yu, B. He, and H. Gu, Artif. Cells Blood Substit. Immobil. Biotechnol., 28, 307 (2009).CrossRefGoogle Scholar
  9. 9.
    H. Kuroda, T. Tanaka, and Z. Osawa, Die Angew. Makromol. Chem., 237, 143 (1996).CrossRefGoogle Scholar
  10. 10.
    S. Sideman, L. Mor, D. Mordohovich, M. Mihich, O. Zinder, and J. M. Brandes, T. Am. Soc. Art. Int. Org., 27, 434 (1981).Google Scholar
  11. 11.
    N. Ahmad, K. Arif, S. M. Faisal, M. K. Neyaz, S. Tayyab, and M. Owais, Biochim. Biophys. Acta, 1760, 227 (2006).CrossRefGoogle Scholar
  12. 12.
    N. B. Iannucci, F. J. Wolman, S. A. Camperi, A. A. N. Cañizo, M. Grasselli, and O. Cascone, Braz. J. Chem. Eng., 20, 27 (2003).CrossRefGoogle Scholar
  13. 13.
    H. Sun, L. Zhang, H. Chai, J. Yu, H. Qian, and H. Chen, Sep. Purif. Technol., 48, 215 (2006).CrossRefGoogle Scholar
  14. 14.
    A. F. Che, X. J. Huang, and Z. K. Xu, J. Membr. Sci., 366, 272 (2011).CrossRefGoogle Scholar
  15. 15.
    E. Klein, J. Membr. Sci., 179, 1 (2000).CrossRefGoogle Scholar
  16. 16.
    C. Charcosset, J. Chem. Technol. Biot., 71, 95 (1998).CrossRefGoogle Scholar
  17. 17.
    M. Min, L. Shen, G. Hong, M. Zhu, Y. Zhang, X. Wang, Y. Chen, and B. S. Hsiao, Chem. Eng. J., 197, 88 (2012).CrossRefGoogle Scholar
  18. 18.
    D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).CrossRefGoogle Scholar
  19. 19.
    V. Karakoç, H. Yavuz, and A. Denizli, Colloid Surf. APhysicochem. Eng. Asp., 240, 93 (2004).CrossRefGoogle Scholar
  20. 20.
    Z. Ma, M. Kotaki, and S. Ramakrishna, J. Membr. Sci., 265, 115 (2005).CrossRefGoogle Scholar
  21. 21.
    L. R. Castilho, F. B. Anspach, and W. D. Deckwer, J. Membr. Sci., 207, 253 (2002).CrossRefGoogle Scholar
  22. 22.
    C. Boss, E. Meurville, J. M. Sallese, and P. Ryser, J. Membr. Sci., 401, 217 (2012).CrossRefGoogle Scholar
  23. 23.
    Z. Heng, Q. Xiaoming, Z. Qui, and Y. Zhaohang, J. Ind. Text., 45, 48 (2014).CrossRefGoogle Scholar
  24. 24.
    E. B. Altintas, D. Türkmen, V. Karakoç, and A. Denizli, J. Biomater. Sci., 22, 957 (2011).CrossRefGoogle Scholar
  25. 25.
    L. Zhang and G. Jin, J. Chromatogr. B., 821, 112 (2005).CrossRefGoogle Scholar
  26. 26.
    B. Xia, G. Zhang, and F. Zhang, J. Membr. Sci., 226, 9 (2003).CrossRefGoogle Scholar
  27. 27.
    J. Ju, G. He, Z. Duan, W. Zhao, Y. Liu, L. Zhang, and Y. Li, Bio. Chem. Eng. J., 79, 144 (2013).Google Scholar
  28. 28.
    L. Uzun and A. Denizli, J. Biomat. Sci.-Polym. E, 17, 791 (2006).CrossRefGoogle Scholar
  29. 29.
    L. Zhang and G. Jin, J. Chromatogr. A., 821, 112 (2005).Google Scholar
  30. 30.
    Y. Su and C. Li, J. Membr. Sci., 305, 271 (2007).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Xianlin Xu
    • 1
    • 2
  • Fang Zhang
    • 1
  • Wei Wang
    • 1
  • Nan Li
    • 1
  • Xupin Zhuang
    • 1
    • 2
  • Hang Wang
    • 1
  • Lei Shi
    • 1
  1. 1.College of TextileTianjin Polytechnic UniversityTianjinP. R. China
  2. 2.Key Laboratory of Advanced Textile Composite Materials of Ministry of EducationTianjin Polytechnic UniversityTianjinP. R. China

Personalised recommendations