Fibers and Polymers

, Volume 18, Issue 4, pp 720–730 | Cite as

Reversible and washing resistant textile-based optical pH sensors by dyeing fabrics with curcuma

  • Francesca Truffa Giachet
  • Claudia Vineis
  • Diego Omar Sanchez Ramirez
  • Riccardo Andrea Carletto
  • Alessio Varesano
  • Giorgio Mazzuchetti
Article
  • 98 Downloads

Abstract

Curcuma powder was used to dye cotton and polyamide 6,6 fabrics in order to produce textile-based optical pH sensors. Both fabrics showed a bright yellow color after dyeing and demonstrated color changes (towards red) when contacted with basic solutions. Color change and sensitivity differ for cotton and for polyamide. Curcuma-dyed cotton shows color changes in particular in the range of pH between 6.5 and 8.5, whilst curcuma-dyed polyamide shows a wider pH range: from 8.5 to 13.0. The stability of pH sensing to washing was evaluated. Three different kinds of washing agents were used in order to simulate the real life conditions of a garment or a cloth. Standard test methods were used when available for washing tests. The pH sensing of the curcuma-dyed fabrics demonstrated an excellent fastness to all kinds of washing. Ionic strength of the solution does not affect the color changes. Moreover, color reversibility of the fabrics was proven, too. Color change and reversibility of the fabrics was assessed by an UV-visible spectrophotometer. Spectral changes were observed at 540 nm for curcuma-dyed cotton, and at 487 and 574 nm for polyamide.

Keywords

Optical device pH sensing Textile sensor Stability to washing Color reversibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Yuqing, C. Jianrong, and F. Keming, J. Biochem. Biophys. Methods, 63, 1 (2005).CrossRefGoogle Scholar
  2. 2.
    D. Wencel, T. Abel, and C. McDonagh, Anal. Chem., 86, 15 (2014).CrossRefGoogle Scholar
  3. 3.
    O. Korostynska, K. Arshak, E. Gill, and A. Arshak, Sensors, 7, 3027 (2007).CrossRefGoogle Scholar
  4. 4.
    L. Van der Schueren and K. De Clerck, Color. Technol., 128, 82 (2012).CrossRefGoogle Scholar
  5. 5.
    K. Devarayan and B.-S. Kim, Sensor. Actuat. B-Chem., 209, 281 (2015).CrossRefGoogle Scholar
  6. 6.
    L. Van der Schueren, K. De Clerck, G. Brancatelli, G. Rosace, E. Van Damme, and W. De Vos, Sensor. Actuat. BChem., 162, 27 (2012).CrossRefGoogle Scholar
  7. 7.
    M. Caldara, C. Colleoni, E. Guido, V. Re, and G. Rosace, Sensor. Actuat. B-Chem., 171-172, 1013 (2012).CrossRefGoogle Scholar
  8. 8.
    J. B. Park, S.-H. Kim, and J.-S. Bae, Fiber. Polym., 12, 696 (2011).CrossRefGoogle Scholar
  9. 9.
    G. J. Mohra and H. Müller, Sensor. Actuat. B-Chem., 206, 788 (2015).CrossRefGoogle Scholar
  10. 10.
    G. Baysal, S. Önder, I. Göcek, L. Trabzon, H. Kizil, F. Nese Kök, and B. Karagüzel Kayaoglu, Sensor. Actuat. BChem., 208, 475 (2015).CrossRefGoogle Scholar
  11. 11.
    M. M. Rodgers, V. M. Pai, and R. S. Conroy, IEEE Sens. J., 15, 3119 (2015).CrossRefGoogle Scholar
  12. 12.
    J. R. Windmiller and J. Wang, Electroanal., 5, 29 (2013).CrossRefGoogle Scholar
  13. 13.
    D. Morris, S. Coyle, Y. Z. Wu, K. T. Lau, G. Wallace, and D. Diamond, Sensor. Actuat. B-Chem., 139, 231 (2009).CrossRefGoogle Scholar
  14. 14.
    J. Luo and Y. Wan, J. Membr. Sci., 438, 18 (2013).CrossRefGoogle Scholar
  15. 15.
    D. Ghernaout and B. Ghernaout, Desalin. Water Treat. 44, 15 (2012).CrossRefGoogle Scholar
  16. 16.
    A. Andrés-Bello, V. Barreto-Palacios, P. García-Segovia, J. Mir-Bel, and J. Martínez-Monzó, Food Eng. Rev., 5, 158 (2013).CrossRefGoogle Scholar
  17. 17.
    A. Derossi, A. G. Fiore, T. De Pilli, and C. Severini, Crit. Rev. Food Sci. Nutr., 51, 955 (2011).CrossRefGoogle Scholar
  18. 18.
    M. M. Theron and J. F. R. Lues, Food Rev. Int., 23, 141 (2007).CrossRefGoogle Scholar
  19. 19.
    H. P. T. Ammon and M. A. Wah, Planta Med., 57, 1 (1991).CrossRefGoogle Scholar
  20. 20.
    N. Pourreza and H. Golmohammadi, Talanta, 131, 136 (2015).CrossRefGoogle Scholar
  21. 21.
    R. Mari Selvam, G. Athinarayanan, A. Usha Raja Nanthini, A. J. A. Ranjit Singh, K. Kalirajan, and P. Mosae Selvakumar, Ind. Crop. Prod., 70, 84 (2015).CrossRefGoogle Scholar
  22. 22.
    B. Kuswandi, T. S. Larasati, A. Abdullah, and L. Y. Heng, Food Anal. Methods, 5, 881 (2012).CrossRefGoogle Scholar
  23. 23.
    Y. Yue, C. Yin, F. Huo, J. Chao, and Y. Zhang, Sensor. Actuat. B-Chem., 202, 551 (2014).CrossRefGoogle Scholar
  24. 24.
    S. Adeel, I. A. Bhatti, A. Kausar, and E. Osman, Indian J. Fibre Text., 37, 87 (2012).Google Scholar
  25. 25.
    M. M. Hasan, K. Abu Nayem, and A. Y. M. Anwarul Azim, Int. J. Sci. Eng. Technol., 3, 838 (2014).Google Scholar
  26. 26.
    I. A. Bhatti, S. Adeel, M. A. Jamal, M. Safdar, and M. Abbas, Radiat. Phys. Chem., 79, 622 (2010).CrossRefGoogle Scholar
  27. 27.
    M. Mirjalili and L. Karimi, AUTEX Res. J., 13, 51 (2013).CrossRefGoogle Scholar
  28. 28.
    S. Han and Y. Yang, Dyes Pigment., 64, 157 (2005).CrossRefGoogle Scholar
  29. 29.
    O. Suwantong, P. Opanasopit, U. Ruktanonchai, and P. Supaphol, Polymer, 48, 7546 (2007).CrossRefGoogle Scholar
  30. 30.
    P. Pisitsak and U. Ruktanonchai, Text. Res. J., 85, 949 (2015).CrossRefGoogle Scholar
  31. 31.
    N. Reddy, S. Han, Y. Zhao, and Y. Yang, J. Appl. Polym. Sci. 127, 2698 (2013).CrossRefGoogle Scholar
  32. 32.
    D. Sarkar, A. A. Sheikh, K. Batabyal, and B. Mandal, Commun. Soil. Sci. Plan., 45, 1538 (2014).CrossRefGoogle Scholar
  33. 33.
    P. S. Ramanjaneyulu, K. L. Pandey, M. K. Saxena, B. S. Tomar, and K. L. Ramakumar, J. Radioanal. Nucl. Ch., 302, 1231 (2014).CrossRefGoogle Scholar
  34. 34.
    K. Lawrence, S. E. Flower, G. Kociok.Kohn, C. G. Frost, and T. D. James, Anal. Method., 4, 2215 (2012).CrossRefGoogle Scholar
  35. 35.
    E. J. Song, J. A. Lee, J. J. Park, H. J. Kim, N. S. Kim, K. S. Byun, G. S. Choi, and T. K. Moon, Int. J. Cosmetic Sci., 37, 92 (2015).CrossRefGoogle Scholar
  36. 36.
    M. Visscher and V. Narendran, Newborn Infant Nurs. Rev., 14, 135 (2014).CrossRefGoogle Scholar
  37. 37.
    M. H. Schmid-Wendtner and H. C. Korting, Skin Pharmacol. Physiol., 19, 296 (2006).CrossRefGoogle Scholar
  38. 38.
    C. Wiegand, M. Abel, P. Ruth, P. Elsner, and U. C. Hipler, Skin Pharmacol. Physiol., 28, 147 (2015).CrossRefGoogle Scholar
  39. 39.
    A. Varesano, C. Vineis, C. Tonetti, D. O. Sánchez Ramírez, and G. Mazzuchetti, J. Appl. Polym. Sci. 131, 40532 (2014).Google Scholar
  40. 40.
    A. Varesano, B. Antognozzi, and C. Tonin, Synth. Met., 160, 1683 (2010).CrossRefGoogle Scholar
  41. 41.
    A. Varesano, F. Rombaldoni, C. Tonetti, S. Di Mauro, and G. Mazzuchetti, J. Appl. Polym. Sci. 131, 39766 (2014).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Francesca Truffa Giachet
    • 1
  • Claudia Vineis
    • 1
  • Diego Omar Sanchez Ramirez
    • 1
  • Riccardo Andrea Carletto
    • 1
  • Alessio Varesano
    • 1
  • Giorgio Mazzuchetti
    • 1
  1. 1.CNR-ISMAC, Institute for Macromolecular StudiesC.so G. PellaBiellaItaly

Personalised recommendations