Advertisement

Fibers and Polymers

, Volume 18, Issue 4, pp 641–648 | Cite as

A bio-antifelting agent based on waterborne polyurethane and keratin polypeptides extracted by protease from waste wool

Article

Abstract

A bio-composite made from keratin polypeptides and waterborne polyurethane was firstly employed as a bioantifelting agent for wool fabric. The keratin polypeptides, extracted from the waste wool fibers with the protease Esperase8.0L, possessed 5271 weight-average molecular weight. The bio-composites containing different contents of keratin polypeptides were applied for wool anti-felting treatment by a pad-dry-cure process. The results indicated that with increasing content of keratin polypeptides from 0 to 6 wt.%, the area-shrinking rate of the treated wool fabrics was decreased from 4.55 % to 0.47 %, respectively. The warp and weft tensile strength at break of the fabric was increased by 8 % and 12 %, respectively and reduced by about 55 % consumption of waterborne polyurethane. The film of bio-composites had more excellent thermal stability, higher mechanical property in elasticity, and better cytocompatibility compared with the pure waterborne polyurethane film.

Keywords

Bio-composite Polyurethane Keratin polypeptides Anti-felting Elasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Millington, Color. Technol., 122, 169 (2006).CrossRefGoogle Scholar
  2. 2.
    Q. Wang, P. Wang, X. Fan, L. Cui, X. Zhao, and X. Gao, Fiber. Polym., 10, 724 (2009).CrossRefGoogle Scholar
  3. 3.
    E. Smith and J. Shen, J. Biotechnol., 156, 134 (2011).CrossRefGoogle Scholar
  4. 4.
    P. Jovancic, D. Jocic, R. Molina, M. R. Julia, and P. Erra, Text. Res. J., 71, 948 (2001).CrossRefGoogle Scholar
  5. 5.
    J. Cortez, P. L. R. Bonner, and M. Griffin, Enzyme. Microb. Technol., 34, 64 (2004).CrossRefGoogle Scholar
  6. 6.
    J. R. Cook and B. E. Fleischfresser, J. Text. Inst., 76, 122 (1985).CrossRefGoogle Scholar
  7. 7.
    D. A. Wicks and Z. W. Wicks, Prog. Org. Coat., 41, 1 (2001).CrossRefGoogle Scholar
  8. 8.
    J. Shi, X. Han, and K. Yan, Text. Res. J., 84, 1174 (2014).CrossRefGoogle Scholar
  9. 9.
    Q. Zhao, G. Sun, K. Yan, A. Zhou, and Y. Chen, Carbohydr. Polym., 91, 169 (2013).CrossRefGoogle Scholar
  10. 10.
    Z. Fang, J. Zhang, B. Liu, G. Du, and J. Chen, Bioresour. Technol., 140, 286 (2013).CrossRefGoogle Scholar
  11. 11.
    X. Lü and S. Cui, Bioresour. Technol., 101, 4703 (2010).CrossRefGoogle Scholar
  12. 12.
    A. Grazziotin, F. A. Pimentel, S. Sangali, E. V. de Jong, and A. Brandelli, Bioresour. Technol., 98, 3172 (2007).CrossRefGoogle Scholar
  13. 13.
    M. Dudynski, K. Kwiatkowski, and K. Bajer, Waste Manage., 32, 685 (2012).CrossRefGoogle Scholar
  14. 14.
    A. Brandelli, D. J. Daroit, and A. Riffel, Appl. Microbiol. Biotechnol., 85, 1735 (2010).CrossRefGoogle Scholar
  15. 15.
    R. Vijayaraghavan, N. Vedaraman, C. Muralidharan, A. B. Mandal, and D. R. MacFarlane, Green. Chem., 17, 1001 (2015).CrossRefGoogle Scholar
  16. 16.
    V. Saucedo-Rivalcoba, A. L. Martínez-Hernández, G. Martínez-Barrera, C. Velasco-Santos, and V. M. Castaño, Appl. Phys. A., 104, 219 (2010).CrossRefGoogle Scholar
  17. 17.
    V. Saucedo-Rivalcoba, A. L. Martínez-Hernández, G. Martínez-Barrera, C. Velasco-Santos, J. L. Rivera-Armenta, and V. M. Castaño, Water. Air. Soil. Pollut., 218, 555 (2011).CrossRefGoogle Scholar
  18. 18.
    M. D. Manrique-Juárez, A. L. Martínez-Hernández, O. F. Olea-Mejía, J. Flores-Estrada, J. L. Rivera-Armenta, and C. Velasco-Santos, Int. J. Polym. Sci., 2013, 1 (2013).CrossRefGoogle Scholar
  19. 19.
    L. R. Burnett, J. G. Richter, M. B. Rahmany, R. Soler, J. A. Steen, G. Orlando, T. Abouswareb, and M. E. Van Dyke, J. Biomater. Appl., 28, 869 (2014).CrossRefGoogle Scholar
  20. 20.
    S. A. Poursamar, A. N. Lehner, M. Azami, S. Ebrahimi-Barough, A. Samadikuchaksaraei, and A. P. M. Antunes, Mater. Sci. Eng: C., 63, 1 (2016).CrossRefGoogle Scholar
  21. 21.
    H. Xie, S. Li, and S. Zhang, Green Chem., 7, 606 (2005).CrossRefGoogle Scholar
  22. 22.
    S. I. N. Ayutthaya, S. Tanpichai, and J. Wootthikanokkhan, J. Polym. Environ., 23, 506 (2015).CrossRefGoogle Scholar
  23. 23.
    H. B. Lin, Z. C. Zhao, C. Garcia-Echeverria, D. H. Rich, and S. L. Cooper, J. Biomat. Sci.-Polym. E., 3, 217 (1992).CrossRefGoogle Scholar
  24. 24.
    W. Brostow, H. E. H. Lobland, and M. Narkis, Polym. Bull., 67, 1697 (2011).CrossRefGoogle Scholar
  25. 25.
    H. Liu, L. Zhang, Y. Zuo, L. Wang, D. Huang, J. Shen, P. Shi, and Y. Li, J. Appl. Polym. Sci. 112, 2968 (2009).CrossRefGoogle Scholar
  26. 26.
    T. Hosseini-Sianaki, H. Nazockdast, B. Salehnia, and E. Nazockdast, Polym. Eng. Sci., 55, 2163 (2015).CrossRefGoogle Scholar
  27. 27.
    E. J. C. Amieva, C. Velasco-Santos, A. L. Martínez-Hernández, J. L. Rivera-Armenta, A. M. Mendoza-Martínez, and V. M. Castaño, J. Compos. Mater., 49, 275 (2015).CrossRefGoogle Scholar
  28. 28.
    C. Popescu and P. Augustin, J. Therm. Anal. Calorim., 57, 509 (1999).CrossRefGoogle Scholar
  29. 29.
    S. M. Cetina-Diaz, L. H. Chan-Chan, R. F. Vargas-Coronado, J. M. Cervantes-Uc, P. Quintana-Owen, K. Paakinaho, M. Kellomaki, L. Di Silvio, and J. V. Cauich-Rodríguez, J. Mater. Chem. B., 2, 1966 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiPR China
  2. 2.National Engineering Research Center for Dyeing and Finishing of TextilesDonghua UniversityShanghaiPR China
  3. 3.National Cashmere Products Engineering & Technical Research CenterErdos Cashmere GroupOrdos, Inner MongoliaPR China

Personalised recommendations