Advertisement

Fibers and Polymers

, Volume 18, Issue 4, pp 666–674 | Cite as

The comparison of phosphorus-nitrogen and sulfur-phosphorus-nitrogen on the anti-flammability and thermal degradation of cotton fabrics

  • SeChin Chang
  • Monique Nguyen
  • Brian Condon
  • Jade Smith
Article

Abstract

Phosphorus-nitrogen (P-N) or sulfur (S) containing compounds are well known for their effectiveness as flame retardant additives for many polymeric systems. When either phosphorus or nitrogen is combined with sulfur, the new systems prove to be successful combinations. This research aims to learn the impact of two systems, P-N and S-P-N, on the flammability and thermal properties of cotton fabrics. The process includes the synthesis of two compounds, tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) and O,O,O',O'-tetramethyl piperazine-1,4-diyldiphosphonothioate (TMPT), and the evaluation of flammability, thermal degradation, and surface morphology of the treated fabrics. Both compounds exhibit similar burning behavior and show improved flame retardancy and thermal properties when used on various cotton fabrics. Some unique flame retardant properties for the two compounds are also disclosed.

Keywords

Sulfur-phosphorus-nitrogen (S-P-N) Cotton Cotton fabric Flammability Thermal degradation Surface morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Lewin and E. D. Weil, “Mechanisms and Modes of Action in Flame Retardancy of Polymer”, 1st ed., Cambridge and Florida: Woodhead Publishing Ltd. and CRC Press LLC, 2001.CrossRefGoogle Scholar
  2. 2.
    B. Schartel, Materials, 3, 4710 (2010).CrossRefGoogle Scholar
  3. 3.
    A. Basch and M. Lewin, Text. Res. J., 43, 689 (1973).CrossRefGoogle Scholar
  4. 4.
    U. Braun, H. Bahr, H. Sturm, and B. Schartel, Polym. Adv. Technol., 19, 680 (2008).CrossRefGoogle Scholar
  5. 5.
    U. Braun and B. Schartel, Macromol. Mater. Eng., 293, 206 (2008).CrossRefGoogle Scholar
  6. 6.
    S. V. Levchik and C. A. Wilkie, Char Formation, In: Fire Retardancy of Polymeric Materials (A. F. Grand and C. A. Wilkie Eds.), pp.171–215, Marcel Dekker, New York, 2000.Google Scholar
  7. 7.
    M. Lewin, Physical and Chemical Mechanisms of Flame Retarding of Polymers, In: Fire Retardancy of Polymers. The Use of Intumescence (M. Le Bras, G. Camino, S. Bourbigot, and R. Delobel, Eds.), pp.3–32, Royal Society of Chemistry, London, 1998.CrossRefGoogle Scholar
  8. 8.
    G. Camino, L. Costa, L. Trossarelli, F. Costanzi, and A. Pagliari, Polym. Degrad. Stabil., 12, 213 (1985).CrossRefGoogle Scholar
  9. 9.
    H. Q. Peng, D. Y. Wang, Q. Zhou, and Y. Z. Wang, Chinese J. Polym. Sci., 26, 299 (2008).CrossRefGoogle Scholar
  10. 10.
    A. A. Younis, K. El-Nagar, and M. A. Nour, Int. J. Chem., 5, 38 (2013).CrossRefGoogle Scholar
  11. 11.
    D. Wesolek and W. Gieparda, J. Nanomater., 2014, 1 (2014).Google Scholar
  12. 12.
    H. T. Deo, N. K. Patel, and B. K. Patel, J. Eng. Fiber. Fabr., 3, 23 (2008).Google Scholar
  13. 13.
    M. J. Tsafack and J. Levalois-Grützmacher, Surf. Coat. Tech., 201, 5789 (2007).Google Scholar
  14. 14.
    G. Laufer, C. Kirkland, A. B. Morgan, and J. C. Grunlan, ACS Macro Lett., 2, 361 (2013).CrossRefGoogle Scholar
  15. 15.
    K. J. Blackburn, R. R. Gallucci, and E. M. Georgiev, U. S. Patent, 6,605,659 (2003).Google Scholar
  16. 16.
    K. Ishii and K. Shimomai, U. S. Patent, 6,342,550 (2002).Google Scholar
  17. 17.
    V. Mark, U. S. Patent, 3,775,367 (1976).Google Scholar
  18. 18.
    D. Yuan, H. Yin, and X. Cai, J. Therm. Anal. Calorim., 114, 19 (2013).CrossRefGoogle Scholar
  19. 19.
    C. S. Zhao, F. L. Huang, W. C. Xiong, and Y. Z. Wang, Polym. Degrad. Stabil., 93, 1188 (2008).CrossRefGoogle Scholar
  20. 20.
    P. Zhao, M. Zhang, D. Wu, and Y. Liu, Korean J. Chem. Eng., 30, 1687 (2013).CrossRefGoogle Scholar
  21. 21.
    I. Kaur and S. K. Verma, Surf. Coat. Technol., 205, 2082 (2010).CrossRefGoogle Scholar
  22. 22.
    S. K. Verma and I. Kaur, J. Appl. Polym. Sci. 125, 1506 (2012).CrossRefGoogle Scholar
  23. 23.
    M. Lewin, J. Brozek, and M. M. Martens, Polym. Adv. Technol., 13, 1091 (2002).CrossRefGoogle Scholar
  24. 24.
    K. R. Fontenot, M. M. Nguyen, M. S. Al-Abdul-Wahid, M. W. Easson, S. Chang, G. A. Lorigan, and B. D. Condon, Polym. Degrad. Stabil., 120, 32 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. Liu and Q. Wang, J. Polym. Res., 16, 583 (2009).Google Scholar
  26. 26.
    T. M. Nguyen, S. Chang, B. D. Condon, T. P. Thomas, and P. Azadi, J. Anal. Appl. Pyrolysis, 110, 122 (2014).CrossRefGoogle Scholar
  27. 27.
    Standard Test Method for Flame Resistance of Textiles (Vertical Test), American Society for Standards and Testing, ASTM D6413-11.Google Scholar
  28. 28.
    Standard Test Method for Flame Resistance of Textiles (45 Degree Angle), American Society for Standards and Testing, ASTM D1230-10.Google Scholar
  29. 29.
    Minimum Oxygen Concentration to Support Candle-like Combustion (LOI), American Society for Standards and Testing, ASTM D2863-09.Google Scholar
  30. 30.
    T. M. Nguyen, S. Chang, and B. Condon, Polym. Adv.. Technol., 25, 665 (2014).CrossRefGoogle Scholar
  31. 31.
    T. M. Nguyen, S. Chang, B. D. Condon, and J. Smith, Mater. Sci. Appl., 5, 789 (2014).Google Scholar
  32. 32.
    T. M. Nguyen, S. Chang, B. Condon, and R. Slopek, Fiber. Polym., 13, 963 (2012).CrossRefGoogle Scholar
  33. 33.
    T. M. Nguyen, S. Chang, B. Condon, M. Uchimiya, E. Graves, J. Smith, M. Easson, and P. Wakelyn, Polym. Advan. Technol., 23, 1036 (2012).CrossRefGoogle Scholar
  34. 34.
    http://www.fire.tc.faa.gov/pdf/tn04-21.pdfGoogle Scholar
  35. 35.
    http://www.tyndaleusa.com/index.php/component/content/article/36/100-astm-d6413Google Scholar
  36. 36.
    Nature Works, Furnishings flammability characteristics, http://www.natureworksllc.com/~/media/Technical_Resources/Fact_Sheets/Fibers/FactSheet_HomeTextiles_Furnishings FlammabilityCharacteristics_pdf.pdf (2004).Google Scholar
  37. 37.
    M. Nelson, Combustion of Polymers, Oxygen-Index Methods, http://www.uow.edu.au/~mnelson/review.dir/oxygen. html (2002).Google Scholar
  38. 38.
    T. M. Nguyen, S. Chang, B. D. Condon, R. Slopek, E. Graves, and M. Yoshioka-Tarver, Ind. Eng. Chem. Res., 52, 4715 (2013).CrossRefGoogle Scholar
  39. 39.
    I. S. Koo, D. Ali, K. Yang, Y. Park, A. Esbata, G. W. vanLoon, and E. Buncel, Can. J. Chem., 87, 433 (2009).CrossRefGoogle Scholar
  40. 40.
    G. Subbareddy, H. Jaya Prakashs, K. Uma Maheswara Rao, E. Dadapeer, B. Satheesh Krishna, and C. Suresh Reddy, Int. J. Pharm. Bio Sci., 3, 343 (2012).Google Scholar
  41. 41.
    H. J. Reich, NMR Spectroscopy, http://www.chem.wisc.edu/areas/reich/nmr/07-multi-01-nuclear.htm (2014).Google Scholar
  42. 42.
    A. R. Horrocks, Rev. Prog. Coloration, 16, 62 (1986).CrossRefGoogle Scholar
  43. 43.
    G. C. Tesoro, Textilveredlung, 2, 435 (1967).Google Scholar
  44. 44.
    Huntsman, Textile Effects, PYROVATEX® CP NEW, PYROVATEX® CP-LF, Handbook for technicians—flame retardants, http://www.huntsman.com/textile_effects2/Media%20Library/a_MC22FB78577854CFAE040EBCD2C6B1A27/Technical%20Textiles_MC22FB7857ADC4CFAE040 EBCD2C6B1A27/files/PYROVATEX_technical_brochure_ APRIL_20_2012_LR.pdf (2012).Google Scholar
  45. 45.
    K. Katsuura and N. Inagaki, J. Appl. Polym. Sci. 22, 679 (1978).CrossRefGoogle Scholar
  46. 46.
    S. M. Liu, Y. Yang, Z. J. Jiang, Y. H. Zhou, J. Zuo, and J. Q. Zhao, J. Appl. Polym. Sci. 124, 4502 (2012).Google Scholar
  47. 47.
    K. Varga, M. F. Noisternig, U. J. Griesser, L. Alja, and T. Koch, Lenzinger Ber., 89, 50 (2011).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • SeChin Chang
    • 1
  • Monique Nguyen
    • 1
  • Brian Condon
    • 1
  • Jade Smith
    • 1
  1. 1.United States Department of Agriculture-Agricultural Research Service (USDA-ARS)Southern Regional Research Center (SRRC)New OrleansUSA

Personalised recommendations