Fibers and Polymers

, Volume 18, Issue 4, pp 773–785 | Cite as

Greener natural dyeing pathway using a by-product of olive oil; prina and biomordants

  • Özlenen Erdem İşmal


The current study is the first report of using biomordants with prina extract as a possible substitute for environmentally unfavourable metallic mordants. As a part of sustainable and cleaner production approach, eco-friendly natural dyeing conditions were presented in terms of cost and consumption efficiencies. A novel and renewable natural dye source prina is an essential by-product of olive oil production. This biomass was valorized in wool dyeing in conjunction with biomordants namely powder of iris germanica (I. Versicolor), valex (acorn of Quercus ithaburensis ssp.macrolepis), pomegranate (Punica granatum L.) rind, rosemary (Rosmarinus officinalis), and thuja (thuja orientalis). Their color coordinates and fastness properties were compared and assessed versus metallic mordants. Prina extract itself without mordant has a fair light fastness of 3 and an excellent washing fastness of 4-5 both for color change and bleeding. Valex, pomegranate rind, iris, rosemary, and thuja leaves were proposed as promising alternatives to alum, iron II sulfate, copper II sulfate, stannous chloride, and potassium dichromate. Biomordants generated significant color yield increment and exhibited equivalent fastness properties to metallic mordants. Water, energy, dye, chemical cost, and consumption of natural and synthetic dyeings on the basis of mill conditions were also calculated and compared mutually. Total recipe cost and chemicals/auxiliary consumption of natural dyeing are on average significantly less than with synthetic dyeing. Considerable savings are possible with natural dyeing, especially one-bath, in terms of cost, time, and consumption.


Prina/olive pomace/olive cake Natural dyeing Olive oil by-product Biomordant Metallic mordant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Pereira and M. Alves, Dyes-Environmental Impact and Remediation in “Environmental Protection Strategies for Sustainable Development” (A. Malik and E. Grohmann Eds.), Springer, 111, 2012.Google Scholar
  2. 2.
    M. B. Kasiri and S. Safapour, Natural Dyes and Antimicrobials for Textiles in “Green Materials for Energy, Products and Depollution, Environmental Chemistry for a Sustainable World” (E. Lichtfouse, J. Schwarzbauer, D. Robert Eds.), Springer, 229, 2014.Google Scholar
  3. 3.
    T. Bechtold, R. Mussak, A. Mahmud-Ali, E. Ganglberger, and S. Geissler, J. Sci. Food Agric., 86, 233 (2006).CrossRefGoogle Scholar
  4. 4.
    S. Saxena and A. S. M. Raja, Natural Dyes: Sources, Chemistry, Application and Sustainability Issues in “Roadmap to Sustainable Textiles and Clothing, Textile Science and Clothing Technology Eco Friendly Raw Materials, Technologies and Processing Methods” (S. S. Muthu Ed.), Springer, 37, 2014.Google Scholar
  5. 5.
    M. Oktav Bulut and E. Akar, J. Clean. Prod., 32, 1 (2012).CrossRefGoogle Scholar
  6. 6.
    X. Hou, X. Chen, Y. Cheng, H. Xu, L. Chen, and Y. Yang, J. Clean. Prod., 52, 410 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Karaboyaci, J. Text. Inst., 105, 1160 (2014).CrossRefGoogle Scholar
  8. 8.
    M. Karaboyaci and S. S. Ugur, J. Text. Inst., 105, 821 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Oktav Bulut, H. Baydar, and E. Akar, J. Text. Inst., 105, 5559 (2014).CrossRefGoogle Scholar
  10. 10.
    P. S. Vankar, R. Shanker, and A. Verma, J. Clean. Prod., 15, 1441 (2007).CrossRefGoogle Scholar
  11. 11.
    S. Baliarsingh, A. K. Panda, J. Jena, T. Das, and N. B. Das, J. Clean. Prod., 37, 257 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Roig, M. L. Cayuela, and M. A. Sanchez-Monedero, Waste Manage., 26, 960 (2006).Google Scholar
  13. 13.
    S. Takaç and A. Karakaya, Recent Patents on Chemical Engineering, 2, 230 (2009).CrossRefGoogle Scholar
  14. 14.
    Y. Beken and A. Sahin, Int. J. Agric. Biol., 13, 423 (2011).Google Scholar
  15. 15.
    Ö. E. Ismal, Color. Technol., 130, 147 (2014).CrossRefGoogle Scholar
  16. 16.
    A. Çinar, A. Cansev, and Y. Sahan, Biyoloji Bilimleri Arastirma Dergisi, 4, 55 (2011).Google Scholar
  17. 17.
    Ö. E. Ismal and L. Yildirim, Indian J. Fibre Text. Res., 37, 358 (2012).Google Scholar
  18. 18.
    Ö. E. Ismal, L. Yildirim, and E. Özdogan, J. Clean. Prod., 70, 61 (2014).CrossRefGoogle Scholar
  19. 19.
    Ö. E. Ismal, L. Yildirim, and E. Özdogan, J. Text. Inst., 106, 343 (2015).CrossRefGoogle Scholar
  20. 20.
    K. Ramakrishnan, S. R. Selve, and R. Shubha, Indian Chem. Eng., 48, 88 (2006).Google Scholar
  21. 21.
    M. Hancock, Potential for Colourants from Plant Sources in England & Wales, Arable Crops & Horticulture Division, 1997. Docs/Colourants.pdf (accessed Feb. 12, 2017).Google Scholar
  22. 22.
    E. Yi and Y. J. Rhee, Fiber. Polym., 10, 200 (2009).CrossRefGoogle Scholar
  23. 23.
    T. Bechtold and R. Mussak, “Handbook of Natural Colorant”, John Wiley & Sons, Ltd., 2009.CrossRefGoogle Scholar
  24. 24.
    H. T. Deo and B. K. Desai, J. Soc. Dyers Color., 115, 224 (1999).Google Scholar
  25. 25.
    J. P. Mathur and N. P. Gupta, Indian J. Fibre Text. Res., 28, 90 (2003).Google Scholar
  26. 26.
    K. H. Prabhu, M. D. Teli, and N. G. Waghmare, Fiber. Polym., 12, 753 (2011).CrossRefGoogle Scholar
  27. 27.
    H. F. Mansour and S. Heffernan, Clean Techn. Environ. Policy, 13, 207 (2011).CrossRefGoogle Scholar
  28. 28.
    J. D. Saikhom, K. S. Potsangbam, and M. D. Choudhury, Indian J. Fibre Text. Res., 40, 184 (2015).Google Scholar
  29. 29.
    A. K. Samanta, A. Konar, S. Chakraborti, and S. Data, Indian J. Fibre Text. Res., 36, 63 (2011).Google Scholar
  30. 30.
    M. Kumaresan, P. N. Palanisamy, and P. E. Kumar, Indian J. Fibre Text. Res., 37, 194 (2012).Google Scholar
  31. 31.
    D. Grifoni, L. Bacci, G. Zipoli, L. Albanese, and F. Sabatini, Dyes Pigment., 91, 279 (2011).CrossRefGoogle Scholar
  32. 32.
    R. R. Mahangade, P. V. Varadarajan, J. K. Verma, and H. Bosco, Indian J. Fibre Text. Res., 34, 279 (2009).Google Scholar
  33. 33.
    A. Haji, Iran. J. Chem. Chem. Eng., 29, 55 (2010).Google Scholar
  34. 34.
    A. Guesmi, N. Ladhari, N. B. Hamadi, M. Msaddek, and F. Sakli, J. Clean. Prod., 39, 97 (2013).Google Scholar
  35. 35.
    G. Gedik, O. Avinç, A. Yavas, and A. Khoddami, Fiber. Polym., 15, 261 (2014).CrossRefGoogle Scholar
  36. 36.
    O. Avinç, A. Çelik, G. Gedik, and A. Yavas, Fiber. Polym., 14, 866 (2013).CrossRefGoogle Scholar
  37. 37.
    S. J. Park and Y. M. Park, Fiber. Polym., 11, 357 (2010).CrossRefGoogle Scholar
  38. 38.
    S. V. Singh and M. C. Purohit, Indian J. Fibre Text. Res., 39, 97 (2014).Google Scholar
  39. 39.
    S. N. Chattopadhyay, N. C. Pan, A. K. Roy, S. Saxena, and A. Khan, J. Text. Inst., 104, 808 (2013).CrossRefGoogle Scholar
  40. 40.
    Y. Chan, C. P. M. Yeung, C. W. M. Yuen, and K. W. Yeung, Res. J. Text. Apparel, 3, 31 (2011).CrossRefGoogle Scholar
  41. 41.
    K. K. Samanta, S. Basak, and S. K. Chattopadhyay, Ecofriendly Coloration and Functionalization of Textile Using Plant Extracts in “Roadmap to Sustainable Textiles and Clothing Environmental and Social Aspects of Textiles and Clothing Supply Chain” (S. S. Muthu Ed.), pp.263–287, Springer, 2014.Google Scholar
  42. 42.
    A. A. Mahmoud, S. S. AL-Shihry, S. Byeng, and B. W. Son, Phytochemistry, 66, 1685 (2005).CrossRefGoogle Scholar
  43. 43.
    C. S. Kim, S. U. Choi, and K. R. Lee, Planta Med., 78, 485 (2012).CrossRefGoogle Scholar
  44. 44.
    S. Guleria, A. Kumar, and A. K. Tiku, J. Bioscience, 63, 211 (2008).Google Scholar
  45. 45.
    B. K. Mehta, M. Sharma, and S. Sihitut, Indian J. Chem., 38, 1005 (1999).Google Scholar
  46. 46.
    R. Mabey (editor), “The New Age Herbalist: How to use Herbs for Healing, Nutrition, Body Care and Relaxation”, Simon and Schuster Inc., 1988.Google Scholar
  47. 47.
    A. U. Rahman, S. Nasim, I. Baig, S. Jalil, I. Orhan, B. Sener, and M. I. Choudhary, J. Ethnopharmacol., 86, 177 (2003).CrossRefGoogle Scholar
  48. 48.
    S. Islam and M. Shahid, and F. Mohammad, J. Clean. Prod., 57, 2 (2013).CrossRefGoogle Scholar
  49. 49.
    R. Kant, Nat. Sci., 4, 22 (2012).Google Scholar
  50. 50.
    J. Ströhle and G. Schramek, Textiles Achieve Ecological Footprint: New Opportunities for China, China_EN.pdf, accessed March 2015.Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Textile and Fashion Design Department, Faculty of Fine ArtsDokuz Eylül UniversityBalçovaTurkey

Personalised recommendations