Skip to main content
Log in

Properties of polymers as a nanoscale material for fibers in leather

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Hyperbranched polymers, an innovative class of nano-polymers, could enhance the properties of fibers owning to their unique structures. In this study, the ester compound (HPAE) of 3-(bis(2-hydroxyethyl)amino)propionic acid and pentaerythritol was treated with undecylenic acid to obtain novel hyperbranched multiterminal alkenyl polymers (HPAE-UAs). The sizes of the HPAE-UAs could be controlled conveniently from 400 to 1300 nm by adjusting the capped fraction of the hydroxyl groups with undecylenic acids. The molecular structures of HPAE-UAs were characterized by means of FT-IR and 1H-NMR. Then, the effect of the HPAE-UAs on the structures, thermal, and mechanical properties of the wet blue leather were investigated. TEM and SEM demonstrated that the spacing between fibers was enlarged. The thermogravimetric analysis showed that the residual volume of leather could reach up to 30.3 % at about 500 °C. Furthermore, the shrinkage temperature increased to 89.4 °C. It was found that the HPAE-UAs used in leather could improve the thermal performance, physical and mechanical properties. All of these results indicate that HPAE-UAs can be used as a fatliquor with retanning in leather process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Du, L. Shi, and B. Peng, J. Appl. Polym. Sci., 133, 43440 (2016).

    Article  Google Scholar 

  2. Z. Bajza and I. V. Vrcek, J. Mater. Sci., 36, 5265 (2001).

    Article  CAS  Google Scholar 

  3. M. Adeli, B. Rasoulian, F. Saadatmehr, and F. Zabihi, J. Appl. Polym. Sci., 129, 3665 (2013).

    Article  CAS  Google Scholar 

  4. J. Borah and N. Karak, J. Appl. Polym. Sci., 104, 648 (2007).

    Article  CAS  Google Scholar 

  5. S. Li, Q. Lin, H. Zhu, C. Cui, H. Hou, T. Lv, and Y. Li, Fiber. Polym., 17, 282 (2016).

    Article  CAS  Google Scholar 

  6. Y. Liu, C. Yu, H. Jin, B. Jiang, X. Zhu, Y. Zhou, and D. A. Yan, J. Am. Chem. Soc., 135, 4765 (2013).

    Article  CAS  Google Scholar 

  7. S. R. Madeshwaran, J. K. Kwon, and J. W. Cho, Fiber. Polym., 14, 182 (2013).

    Article  CAS  Google Scholar 

  8. W. J. Yang, K. G. Neoh, E. T. Kang, S. L. Teo, and M. D. Rittschof, Polym. Chem., 4, 3105 (2013).

    Article  CAS  Google Scholar 

  9. L. F. Ren, N. Wang, and X. C. Wang, J. Appl. Polym. Sci., 132, 41383 (2015).

    Google Scholar 

  10. Y. Zhao and J. C. Wang, J. Appl. Polym. Sci., 128, 2385 (2013).

    Article  CAS  Google Scholar 

  11. J. Borah and N. Karak, J. Appl. Polym. Sci., 104, 648 (2007).

    Article  CAS  Google Scholar 

  12. T. T. Qiang, G. G. Zhang, and M. Luo, Fine Chemicals (China), 2012, 692 (2012).

    Google Scholar 

  13. Y. Kitajyo, T. Imai, Y. Sakai, M. Tamaki, H. Tani, K. Takahashi, and T. Kakuchi, Polymer, 48, 1237 (2007).

    Article  CAS  Google Scholar 

  14. H. Mori, D. C. Seng, M. Zhang, and A. H. Müller, Langmuir, 18, 3682 (2002).

    Article  CAS  Google Scholar 

  15. S. F. Shiau, T. Y. Juang, H. W. Chou, and M. Liang, Polymer, 54, 623 (2013).

    Article  CAS  Google Scholar 

  16. T. Sato, T. Nakamura, M. Seno, and T. Hirano, Polymer, 47, 4630 (2006).

    Article  CAS  Google Scholar 

  17. H. Tian, C. Deng, H. Lin, J. Sun, M. Deng, X. Chen, and X. Jing, Biomaterials, 26, 4209 (2005).

    Article  CAS  Google Scholar 

  18. S. G. An, G. H. Li, and C. G. Cho, Polymer, 47, 4154 (2006).

    Article  CAS  Google Scholar 

  19. X. Zhai, S. Peleshanko, N. S. Klimenko, K. L. Genson, D. Vaknin, M. Y. Vortman, and V. V. Tsukruk, Macromolecules, 36, 3101 (2003).

    Article  CAS  Google Scholar 

  20. H. Cheng, S. Wang, J. Yang, Y. Zhou, and D. Yan, J. Colloid. Interf. Sci., 337, 278 (2009).

    Article  CAS  Google Scholar 

  21. X. X. Wang, G. Q. Lai, Z. Jiang, and Y. Zhang, Eur. Polym. J., 42, 286 (2006).

    Article  CAS  Google Scholar 

  22. Y. Kitajyo, Y. Nawa, M. Tamaki, H. Tani, K. Takahashi, H. Kaga, and T. Kakuchi, Polymer, 48, 4683 (2007).

    Article  CAS  Google Scholar 

  23. G. Xu and W. Shi, Prog. Org. Coat., 52, 110 (2005).

    Article  CAS  Google Scholar 

  24. K. Sizeland, G. Holmes, R. Edmonds, N. Kirby, A. Hawley, and S. Mude, J. Am. Leather. Chem. Assoc., 110, 355 (2015).

    CAS  Google Scholar 

  25. I. P. Fernandes, J. S. Amaral, V. Pinto, M. J. Ferreira, and M. F. Barreiro, Carbohydr. Polym., 98, 1229 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, X., Zhang, T. et al. Properties of polymers as a nanoscale material for fibers in leather. Fibers Polym 18, 1504–1511 (2017). https://doi.org/10.1007/s12221-017-6583-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6583-3

Keywords

Navigation