Fibers and Polymers

, Volume 18, Issue 4, pp 741–748 | Cite as

Optimization and extraction of extra and intracellular color from Penicillium minioluteum for application on protein fibers



Precedence of microbial colorants can be seen in almost all the industrial sectors viz. food, textile, paper, agriculture, pharmaceutical, and cosmetics. These colorants are gaining popularity due to their salient advantages over synthetic and natural dyes. This study deals with the optimization and extraction of such colorants from Penicillium minioluteum for the purpose of dyeing different protein fibers. Penicillium minioluteum was cultured under different growth conditions to optimize the extracellular color production. The extracellular colorant grown under optimized fermentation conditions (medium-sabouraud; pH-5.6; temperature-15 °C; time-20 days; incubation-static) in 3000 ml haffkine flask showed maximum color or highest optical density of 1.014 at λ max=490 nm. Later on, this colorant was extracted using nbutanol. The remaining mycelial mat obtained after filtration was extracted using different chemical and mechanical procedures to get the intracellular colorant. Highest O.D of 0.897 was recorded at λ max=490 nm when desiccated powdered mycelial mat was extracted with methanol. Dyed silk and leather with the extracellular colorant showed color strength (K/S) as 3.88 and 3.81, respectively, whereas silk and leather dyed with the intracellular colorant showed K/S as 0.56 and 0.55, respectively. The color strength of extracellular dyed samples was found to be three times higher as compared to the samples dyed with the intracellular aqueous colorant of the same optical density. After dyeing, two different shades were obtained viz. deep red with the extracellular colorant and beige with the intracellular colorant on mulberry silk and wet blue goat nappa skin leather. Fastness towards rubbing was found to be good for both the samples. Wash fastness was excellent on silk. Fastness towards light was poor for both silk and leather. Furthermore, the color yield of the extracellular colorant (0.62 %) was found to be approximately five times more than the color yield of the intracellular colorant (0.14 %).


Penicillium minioluteum Color Extraction Protein fibers Dyeing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Malik, J. Tokkas, and S. Goyal, Int. J. Microbial Resource Technol., 1, 361 (2012).Google Scholar
  2. 2.
    N. Duran, M. F. S. Teixeria, R. D. Conti, and E. Esposito, Crit. Rev. Food Sci. Nutr., 42, 53 (2002).CrossRefGoogle Scholar
  3. 3.
    V. K. Joshi, D. Attri, A. Bala, and S. Bhushan, Indian J. Biotechnol., 2, 362 (2003).Google Scholar
  4. 4.
    C. Gupta, A. P. Garg, D. Prakash, S. Goyal, and S. Gupta, Pharmacologyonline 2: Newsletter, 2, 1309 (2011).Google Scholar
  5. 5.
    D. D. Santis, M. Moresi, A. M. Gallo, and M. Petruccioli, J. Chem. Technol. Biotechnol., 80, 1072 (2005).Google Scholar
  6. 6.
    F. A. Nagia and R. S. R. EL-Mohamedy, Dyes Pigment., 75, 550 (2007).Google Scholar
  7. 7.
    D. Sharma, C. Gupta, S. Aggarwal, and N. Nagpal, Indian J. Fibre Text. Res., 37, 68 (2012).Google Scholar
  8. 8.
    C. Gupta, and S. Aggarwal, J. Text. Assoc., Jan-Feb issue, 282 (2014).Google Scholar
  9. 9.
    P. Velmurugan, S. K. Kannan, V. Balachandar, P. Lakshmanaperumalsamy, J. C. Chae, and B. T. Oha, Carbohydr. Polym., 79, 262 (2009).CrossRefGoogle Scholar
  10. 10.
    F. Alihosseini, K. S. Ju, J. Lango, B. D. Hammock, and G. Sun, Biotechnol. Progr., 24, 742 (2008).CrossRefGoogle Scholar
  11. 11.
    R. Räisänen, Ph. D. Dissertation, University of Helsinki, Finland, 2002.Google Scholar
  12. 12.
    A. Shirata, T. Tsukamoto, H. Yasui, T. Hata, S. Hayasaka, A. Kojima, and H. Kato, Jpn. Agr. Res. Q., 34, 131 (2000).Google Scholar
  13. 13.
    S. Chiba, N. Tsuyoshi, R. Fudou, M. Ojika, Y. Murakami, Y. Ogoma, M. Oguchi, and S. Yamanaka, J. Gen. Appl. Microbiol., 52, 201 (2006).CrossRefGoogle Scholar
  14. 14.
    D. G. Rao, “Introduction to Biochemical Engineering”, 2nd ed., pp.104–105, Tata McGraw-Hill, New Delhi, 2010.Google Scholar
  15. 15.
    G. Sumbali and R. S. Mehrotra, “Principles of Microbiology”, 1st ed., Tata McGraw-Hill, New Delhi, 2009.Google Scholar
  16. 16.
    A. Kumar, H. S. Vishwakarma, J. Singh, S. Dwivedi, and M. Kumar, IJPCBS, 5, 203 (2015).Google Scholar
  17. 17.
    B. Gonzalez, J. Francois, and M. Renaud, Yeast, 13, 1347 (1997).CrossRefGoogle Scholar
  18. 18.
    M. Henriques, A. Silva, and J. Rocha in Communicating Current Research and Educational Topics and Trends in Applied Microbiology, Microbiology Series No.1 (A. Mendez-Vilas Ed.), Vol. 2, pp.586–593, Formatex Research Center, Badajoz, Spain, 2007.Google Scholar
  19. 19.
    S. O. Fapohunda, G. G. Moore, O. T. Ganiyu, and S. B. Beltz, Mycology: Int. J. Fungal Biol., 3, 210 (2012).Google Scholar
  20. 20.
    J. I. Pitt, J. Basic Microbiol., 21, 629 (1981).Google Scholar
  21. 21.
    A. R. Grivell and J. F. Jackson, J. Gen. Microbiol., 58, 423 (1969).CrossRefGoogle Scholar
  22. 22.
    C. E. Windels, P. M. Burnes, and T. Kommedahl, Am. Phytopathol. Soc., 78, 107 (1988).CrossRefGoogle Scholar
  23. 23.
    D. M. Hall and W. S. Perkins, Tex. Res. J., 41, 923 (1971).CrossRefGoogle Scholar
  24. 24.
    L. A. Purwanto, D. Ibrahim, and H. Sudrajat, World J. Chem., 4, 34 (2009).Google Scholar
  25. 25.
    A. Mendez, C. Perez, J. C. Montanez, G. Martinez, and C. N. Aguilar, JZUS B., 12, 961 (2011).CrossRefGoogle Scholar
  26. 26.
    A. Abubakar, H. A. Suberu, I. M. Bello, R. Abdulkadir, O. A. Daudu, and A. A. Lateef, J. Plant Sci., 4, 64 (2013).CrossRefGoogle Scholar
  27. 27.
    J. M. Scervino, V. L. Papinutti, M. S. Godoy, M. A. Rodriguez, D. Monica, M. Recchi, M. J. Pettinari, and A. M. Godeas, J. Appl. Microbiol., 110, 1215 (2011).CrossRefGoogle Scholar
  28. 28.
    M. M. Yasser, A. S. M. Mousa, O. N. Massoud, and S. H. Nasr, J. Biol. Earth Sci., 4, 2084 (2014).Google Scholar
  29. 29.
    M. H. Chen and M. R. Johns, Appl. Microbiol. Biotechnol., 40, 132 (1993).CrossRefGoogle Scholar
  30. 30.
    J. Mehta, M. Jakhetia, S. Choudhary, J. Mirza, D. Sharma, P. Khatri, P. Gupta, and M. M. Nair, Eur. J. Exp. Biol., 2, 2061 (2012).Google Scholar
  31. 31.
    J. N. Merlin, I. V. S. N. Christhudas, P. P. Kumar, and P. Agastian, Asian J. Pharm. Clin. Res., 6, 98 (2013).Google Scholar
  32. 32.
    F. S. Pradeep and B. V. Pradeep, Int. J. Pharm. Pharm. Sci., 5, 526 (2013).Google Scholar
  33. 33.
    M. Hamdi, P. J. Blanc, M. O. Loret, and G. Goma, Bioprocess. Eng., 17, 75 (1997).Google Scholar
  34. 34.
    Y. J. Cho, J. P. Park, H. J. Hwang, S. W. Kim, J. W. Choi, and J. W. Yun, Lett. Appl. Microbiol., 35, 195 (2002).CrossRefGoogle Scholar
  35. 35.
    D. Culler, H. D. Brown, and W. Milderd, Ohio J. Sci., 49, 97 (1949).Google Scholar
  36. 36.
    B. V. Latha and K. Jeevaratnam, Global J. Biotechnol. Biochem., 5, 166 (2010).Google Scholar
  37. 37.
    S. Raval, V. Chaudhari, H. Gosai, and V. Kothari, Microbiol. Res., 5, 4 (2014).CrossRefGoogle Scholar
  38. 38.
    G. B. Adebayo, F. A. Adekola, and G. A. Olatunji, Bull. Chem. Soc. Ethiop., 21, 159 (2007).CrossRefGoogle Scholar
  39. 39.
    K. Sinha, S. Chowdhury, P. D. Saha, and S. Datta, Ind. Crop Prod., 41, 165 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Fabric and Apparel Science, Institute of Home EconomicsUniversity of DelhiNew DelhiIndia
  2. 2.Department of Microbiology, Institute of Home EconomicsUniversity of DelhiNew DelhiIndia

Personalised recommendations