Advertisement

Fibers and Polymers

, Volume 18, Issue 4, pp 658–665 | Cite as

Application of silver nanoparticles as an antibacterial mordant in wool natural dyeing: Synthesis, antibacterial activity, and color characteristics

  • Hossein Barani
  • Majid Nasiri Boroumand
  • Saeedeh Rafiei
Article

Abstract

Madder is a natural colorant which is commonly applied with metal salts as a mordant to improve its affinity to fibers and color fastness. Madder produces an insoluble complex or lake in the presence of metal ions on mordanted fabric. In this study, wool fabric was pretreated with AgNPs (silver nanoparticles) as a mordant, then dyed with madder. The wool fabric samples were examined by scanning electron microscopy (SEM) and their colorimetric characteristics were evaluated. The formation of spherical silver nanoparticle was confirmed using UV-Visible spectroscopy, SEM images, and elemental analysis. The average size of synthesized silver nanoparticles on the surface of wool fibers is around 73 nm. The dyed wool samples were pretreated with different concentration of Ag+ ions or AgNPs, which showed higher color strength value compared to untreated dyed wool fabric. This pretreatment also presented good antibacterial activity.

Keywords

Natural dye Extract solution Alizarin AgNPs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Gao and R. Cranston, Text. Res. J., 78, 60 (2008).CrossRefGoogle Scholar
  2. 2.
    F. Zhang, X. Wu, Y. Chen, and H. Lin, Fiber. Polym., 10, 496 (2009).CrossRefGoogle Scholar
  3. 3.
    C. Beer, R. Foldbjerg, Y. Hayashi, D. S. Sutherland, and H. Autrup, Toxicol. Lett., 208, 286 (2012).CrossRefGoogle Scholar
  4. 4.
    C. Greulich, D. Braun, A. Peetsch, J. Diendorf, B. Siebers, M. Epple, and M. Koller, RSC Adv., 2, 6981 (2012).CrossRefGoogle Scholar
  5. 5.
    Z. Li, Y. Wang, and Q. Yu, J. Mater. Eng. Perform., 19, 252 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Bayat Tork, N. Hemmati Nejad, S. Ghalehbaghi, A. Bashari, A. Shakeri-Zadeh, and S. Kamrava, J. Ind. Text., 45, 1399 (2014).CrossRefGoogle Scholar
  7. 7.
    H. R. Ghorbani, A. Akbar Safekordi, H. Attar, and S. M. Rezayat Sorkhabadi, Chem. Biochem. Eng. Q., 25, 317 (2011).Google Scholar
  8. 8.
    S. K. Y. Vineet Kumar, J. Chem. Technol. Biot., 84, 151 (2009).CrossRefGoogle Scholar
  9. 9.
    N. A. Begum, S. Mondal, S. Basu, R. A. Laskar, and D. Mandal, Colloid Surf. B-Biointerfaces, 71, 113 (2009).CrossRefGoogle Scholar
  10. 10.
    S. M. Nayan Roy, R. A. Laskar, S. Basu, D. Mandal, and N. A. Begum, Colloid Surf. B-Biointerfaces, 76, 317 (2010).CrossRefGoogle Scholar
  11. 11.
    J. Kasthuri, S. Veerapandian, and N. Rajendiran, Colloids Surf. B-Biointerfaces, 68, 55 (2009).CrossRefGoogle Scholar
  12. 12.
    Z. Z. M. K. Nahar, U. Hashim, and M. F. Bari, Adv. Mater. Res., 1109, 30 (2015).CrossRefGoogle Scholar
  13. 13.
    X. Yue, H. Lin, T. Yan, D. Zhang, H. Lin, and Y. Chen, Fiber. Polym., 15, 716 (2014).CrossRefGoogle Scholar
  14. 14.
    E. Dare, C. Oseghale, A. Labulo, E. Adesuji, E. Elemike, J. Onwuka, and J. Bamgbose, J. Nanostructure Chem., 5, 85 (2015).Google Scholar
  15. 15.
    M. N. Boroumand, M. Montazer, and V. Dutschk, Ind. Textila, 64, 123 (2013).Google Scholar
  16. 16.
    E. Lichtfouse, J. Schwarzbauer, and D. Robert, “Green Materials for Energy, Products and Depollution”, Springer, 2013.CrossRefGoogle Scholar
  17. 17.
    C. R. Meena, J. Textile Assoc., 72, 193 (2011).Google Scholar
  18. 18.
    O. Avinc, A. Celik, G. Gedik, and A. Yavas, Fiber. Polym., 14, 866 (2013).CrossRefGoogle Scholar
  19. 19.
    H. Barani, M. N. Broumand, A. Haji, and M. Kazemipur, J. Nat. Fibers, 9, 73 (2012).CrossRefGoogle Scholar
  20. 20.
    M. C. Moulton, L. K. Braydich-Stolle, M. N. Nadagouda, S. Kunzelman, S. M. Hussain, and R. S. Varma, Nanoscale, 2, 763 (2010).CrossRefGoogle Scholar
  21. 21.
    H. Barani, M. Montazer, N. Samadi, and T. Toliyat, Mol. Membr. Biol., 28, 206 (2011).CrossRefGoogle Scholar
  22. 22.
    H. Barani, M. Montazer, T. Toliyat, and N. Samadi, J. Liposome Res., 20, 323 (2010).Google Scholar
  23. 23.
    H. Barani, M. Montazer, N. Samadi, and T. Toliyat, Colloid Surf. B-Biointerfaces, 92, 9 (2012).CrossRefGoogle Scholar
  24. 24.
    H. Barani, M. Montazer, H.-G. Braun, and V. Dutschk, IET Nanobiotechnol., 8, 282 (2014).CrossRefGoogle Scholar
  25. 25.
    M. Yamamoto, Y. Kashiwagi, and M. Nakamoto, Langmuir, 22, 8581 (2006).CrossRefGoogle Scholar
  26. 26.
    A. Pyatenko, M. Yamaguchi, and M. Suzuki, J. Phys. Chem. C, 111, 7910 (2007).CrossRefGoogle Scholar
  27. 27.
    A. K. Samanta and A. Konar, Natural Dyes, 3, 29 (2011).Google Scholar
  28. 28.
    V. Shinde, P. Jadhav, J. Kim, and P. Patil, J. Mater. Sci., 48, 8393 (2013).CrossRefGoogle Scholar
  29. 29.
    F. M. Kelly and J. H. Johnston, ACS Appl. Mater. Interfaces, 3, 1083 (2011).CrossRefGoogle Scholar
  30. 30.
    G. Freddi, T. Arai, G. M. Colonna, A. Boschi, and M. Tsukada, J. Appl. Polym. Sci., 82, 3513 (2001).CrossRefGoogle Scholar
  31. 31.
    S. S. Muthu Ed., “Roadmap to Sustainable Textiles and Clothing: Environmental and Social Aspects of Textiles and Clothing Supply Chain”, Springer, 2014.Google Scholar
  32. 32.
    F. Shahmoradi Ghaheh, S. M. Mortazavi, F. Alihosseini, A. Fassihi, A. Shams Nateri, and D. Abedi, J. Clean. Prod., 72, 139 (2014).CrossRefGoogle Scholar
  33. 33.
    H. Barani and H. Maleki, J. Disper. Sci. Technol., 32, 1191 (2011).CrossRefGoogle Scholar
  34. 34.
    P.-Y. Silvert, R. Herrera-Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, J. Mater. Chem., 6, 573 (1996).CrossRefGoogle Scholar
  35. 35.
    P. V. Devarajan and S. Jain, “Targeted Drug Delivery: Concepts and Design”, Springer, 2015.Google Scholar
  36. 36.
    H. Barani and A. Haji, J. Mol. Struct., 1079, 35 (2015).CrossRefGoogle Scholar
  37. 37.
    H. Barani and A. Calvimontes, Plasma Chem. Plasma Process., 34, 1291 (2014).CrossRefGoogle Scholar
  38. 38.
    M. Canamares, J. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, J. Raman Spectros., 35, 921 (2004).CrossRefGoogle Scholar
  39. 39.
    P. P. Bose, M. G. Drew, and A. Banerjee, Org. Lett., 9, 2489 (2007).CrossRefGoogle Scholar
  40. 40.
    M. A. Haque, G. A. Khan, S. A. Razzaque, K. Khatun, A. K. Chakraborty, and M. S. Alama, Indian J. Fibre Text. Res., 38, 280 (2013).Google Scholar
  41. 41.
    M. Radetic, J. Mater. Sci., 48, 95 (2013).CrossRefGoogle Scholar
  42. 42.
    F. M. Kelly and J. H. Johnston, ACS Appl. Mater. Interfaces, 3, 1083 (2011).CrossRefGoogle Scholar
  43. 43.
    H. E. Emam, N. H. Saleh, K. S. Nagy, and M. K. Zahran, Int. J. Biol. Macromol., 84, 308 (2016).CrossRefGoogle Scholar
  44. 44.
    M. Yusuf, M. Shahid, M. I. Khan, S. A. Khan, M. A. Khan, and F. Mohammad, J. Saudi Chem. Soc., 19, 64 (2015).CrossRefGoogle Scholar
  45. 45.
    H. Barani and M. Montazer, J. Eng. Fiber. Fabr., 9, 9 (2014).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Hossein Barani
    • 1
  • Majid Nasiri Boroumand
    • 2
  • Saeedeh Rafiei
    • 3
  1. 1.Department of Carpet, Faculty of ArtUniversity of BirjandBirjandIran
  2. 2.Department of CarpetShahid Bahonar University of KermanKermanIran
  3. 3.Department of Textile EngineeringUniversity of GuilanRashtIran

Personalised recommendations