Fibers and Polymers

, Volume 18, Issue 4, pp 625–632 | Cite as

Fluorosilicone modified polyacrylate emulsifier-free latex: Synthesis, properties, and application in fabric finishing



Fluorosilicone modified polyacrylate emulsion was successfully synthesized via emulsifier-free emulsion polymerization using polymerizable surfactant and sol-gel process. TEM analysis indicated that the hybrid particles were spherical-like particles with narrow size distributions. The influence of synthetic conditions on the physical and chemical properties of fluorosilicone modified polyacrylate was investigated, including the mass ratio of methyl methacrylate (MMA)/butyl acrylate (BA) and the content of dodecafluoroheptyl methacrylate (DFMA) and ethyl silicate (TEOS). The water absorption decreased as the MMA/BA mass ratio was reduced from 5/4 to 2/4, then increased afterwards. With the reducing of MMA/BA mass ratio, the tensile strength decreased, while the elongation at break increased. The thermal stability of the hybrid film was improved with the increasing of TEOS amount. Finally, the contact angle results showed that the finished fabric had the excellent water repellency. Meanwhile, the SEM measurements confirmed that the finished fabric had the rough surface. XPS analysis demonstrated that there was a layer of fluorosilicone modified polyacrylate film covered on the finished fabric surface, and fluorinated segments had the tendency to be enriched at the film-air interface.


Fluorosilicone polymers Polyacrylate Emulsifier-free emulsion Water proof agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Z. Ma, X. Y. Zhang, Y. Bao, and J. L. Liu, Colloid Surf. A-Physicochem. Eng. Asp., 472, 21 (2015).CrossRefGoogle Scholar
  2. 2.
    Y. Su, Y. D. Shen, L. Wang, X. R. Wang, X. J. Lai, F. S. Zhang, and G. J. Liu, Appl. Mech. Mater., 316, 923 (2013).CrossRefGoogle Scholar
  3. 3.
    W. Xu, Q. F. An, L. F. Hao, D. Zhang, and M. Zhang, Fiber. Polym., 15, 457 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Abou-Okeil, S. M. El-Sawy, and F. A. Abdel-Mohdy, Carbohydr. Polym., 92, 2293 (2013).CrossRefGoogle Scholar
  5. 5.
    F. Xu, B. R. Qian, Z. Hu, W. D. Chen, Z. Y. Zhuang, B. Y. Zhu, H. Q. Zhang, and K. Zhu, J. Macromol. Sci. A, 50, 555 (2013).CrossRefGoogle Scholar
  6. 6.
    O. Yilmaz, Prog. Org. Coat., 77, 110 (2014).CrossRefGoogle Scholar
  7. 7.
    S. F. Zhang, Y. F. Hu, R. M. Wang, Z. M. Wu, and P. F. Song, Iran Polym. J., 22, 447 (2013).CrossRefGoogle Scholar
  8. 8.
    W. Li, T. T. Xu, C. F. Zhang, Z. B. Bao, and L. J. Chen, J. Macromol. Sci. A, 53, 104 (2016).CrossRefGoogle Scholar
  9. 9.
    W. Yang, L. Q. Zhu, and Y. C. Chen, J. Fluorine Chem., 170, 17 (2015).CrossRefGoogle Scholar
  10. 10.
    Y. Yu, B. Liao, S. L. Jiang, G. N. Li, and F. Sun, Des. Monomers Polym., 18, 199 (2015).CrossRefGoogle Scholar
  11. 11.
    D. X. Han, L. Q. Zhu, Y. C. Chen, W. P. Li, and L. L. Feng, J. Fluorine Chem., 156, 38 (2013).CrossRefGoogle Scholar
  12. 12.
    B. Li, X. H. Li, K. Q. Zhang, H. Li, Y. H. Zhao, L. X. Ren, and X. Y. Yuan, Prog. Org. Coat., 78, 188 (2015).CrossRefGoogle Scholar
  13. 13.
    S. Sajjadi, RSC Adv., 5, 58549 (2015).CrossRefGoogle Scholar
  14. 14.
    D. Nagao, Y. Yamada, S. Inukai, H. Ishii, M. Konno, and S. Gu, Polymer, 68, 176 (2015).CrossRefGoogle Scholar
  15. 15.
    H. Türk, R. B. Karabacak, and M. Erdem, J. Appl. Polym. Sci. 132, 42775 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. G. Park, Y. H. Lee, M. M. Rahman, C. C. Park, and H. D. Kim, Colloid Polym. Sci., 293, 1369 (2015).CrossRefGoogle Scholar
  17. 17.
    T. Yamamoto and K. Kawaguchi, Colloid Polym. Sci., 294, 281 (2016).CrossRefGoogle Scholar
  18. 18.
    Q. H. Zhang, Q. Y. Wang, J. X. Jiang, X. L. Zhan, and F. Q. Chen, Langmuir, 31, 4752 (2015).CrossRefGoogle Scholar
  19. 19.
    K. Q. Li, X. R. Zeng, H. Q. Li, and X. J. Lai, J. Appl. Polym. Sci. 132, 42527 (2015).Google Scholar
  20. 20.
    W. Xu, L. F. Hao, Q. F. An, and X. C. Wang, J. Polym. Res., 22, 1 (2015).CrossRefGoogle Scholar
  21. 21.
    J. H. Zhou, X. Chen, H. Duan, and J. Z. Ma, Polym. Int., 64, 1373 (2015).CrossRefGoogle Scholar
  22. 22.
    Y. F. Zhang, R. Zhang, C. L. Yang, J. Xu, J. Zheng, and M. G. Lu, Colloid Surf. A-Physicochem. Eng. Asp., 436, 549 (2013).CrossRefGoogle Scholar
  23. 23.
    Y. S. Kim, J. B. Wright, and J. C. Grunlan, Polymer, 49, 570 (2008).CrossRefGoogle Scholar
  24. 24.
    J. W. Ha, I. J. Park, and S. B. Lee, Macromolecules, 38, 736 (2005).CrossRefGoogle Scholar
  25. 25.
    R. R. Thomas, K. G. Lloyd, K. M. Stika, L. E. Stephans, G. S. Magallanes, V. L. Dimonie, E. D. Sudol, and M. S. El-Aasser, Macromolecules, 33, 8828 (2000).CrossRefGoogle Scholar
  26. 26.
    B. T. Zhang, B. L. Liu, X. B. Deng, S. S. Cao, X. H. Hou, and H. L. Chen, Appl. Surf. Sci., 254, 452 (2007).CrossRefGoogle Scholar
  27. 27.
    L. Yao, T. T. Yang, and S. Y. Cheng, J. Appl. Polym. Sci. 115, 3500 (2010).CrossRefGoogle Scholar
  28. 28.
    N. García, T. Corrales, J. Guzmán, and P. Tiemblo, Polym. Degrad. Stabil., 92, 635 (2007).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jianhua Zhou
    • 1
    • 2
  • Xin Chen
    • 1
  • Hao Duan
    • 1
  • Jianzhong Ma
    • 1
    • 2
  1. 1.College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi’anChina
  2. 2.Shaanxi Research Institute of Agricultural Products Processing TechnologyXi’anChina

Personalised recommendations