Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch

Abstract

A starch-based composite film was prepared by using fibrous residual of starch extraction (cassava bagasse) as filler. Composite films were prepared through casting technique using fructose as a plasticizer and various sizes and concentrations of bagasse. The physical, thermal, tensile and structural properties of the composite film were investigated. Also, temperature variation of dynamic-mechanical parameters of cassava starch/bagasse composites was investigated by Dynamic Mechanical Analysis (DMA) test. The size and concentration of bagasse were significantly influenced the physical properties of cassava bagasse. There were also increases- in thickness, water solubility, and water absorption of cassava bagasse. There were reduction of water content and density of the film. However, there was no significant effect of adding bagasse on thermal properties. X-ray diffraction (XRD) studies indicated increase in crystallinity of the composites with increase in fiber content. SEM micrographs indicated that the filler was incorporated into the matrix. Films with a small size of bagasse showed better compact structure and homogeneity surface. On the other hand, films with big size and higher concentration of bagasse exhibited more heterogeneous surfaces. The modulus and maximum tensile strength of composite films were increased from 69.03 to 581.68 MPa and 4.7 to 10.78 MPa respectively. Addition of 6 % bagasse was the most efficient reinforcing agent owing to its remarkable physical and mechanical properties. The composites prepared by using cassava for both matrix and reinforcement increased the significance of the remaining residue of starch extraction.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. M. Gleadow, J. R. Evans, S. McCaffery, and T. R. Cavagnaro, Plant Biol., 11, 76 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    S. Iyer, D. S. Mattinson, and J. K. Fellman, Trop. Plant Biol., 3, 151 (2010).

    Article  Google Scholar 

  3. 3.

    P. Panichnumsin, A. Nopharatana, B. Ahring, and P. Chaiprasert, Biomass. Bioenergy, 34, 1117 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    A. Edhirej, S. M. Sapuan, M. Jawaid, and N. I. Zahari, Polym. Compos., doi:10.1002/pc.23614 (2015).

    Google Scholar 

  5. 5.

    L. Castillo, O. López, C. López, N. Zaritzky, M. A. García, S. Barbosa, and M. Villar, Carbohydr. Polym., 95, 664 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    R. Bodirlau, C.-A. Teaca, and I. Spiridon, Compos. Pt. BEng., 44, 575 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    W. N. Gilfillan, D. M. Nguyen, P. A. Sopade, and W. O. Doherty, Ind. Crops Prod., 40, 45 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    F. M. Al-Oqla and S. Sapuan, J. Cleaner Prod., 66, 347 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    S. Kuciel and A. Liber-Knec, J. Biobased Mater. Bioenergy, 3, 269 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    C. M. Müller, J. B. Laurindo, and F. Yamashita, Food Hydrocolloids, 23, 1328 (2009).

    Article  Google Scholar 

  11. 11.

    J. Castaño, S. Rodríguez-Llamazares, C. Carrasco, and R. Bouza, Carbohydr. Polym., 90, 1550 (2012).

    Article  Google Scholar 

  12. 12.

    H. Ibrahim, M. Farag, H. Megahed, and S. Mehanny, Carbohydr. Polym., 101, 11 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    E. D. M. Teixeira, D. Pasquini, A. A. Curvelo, E. Corradini, M. N. Belgacem, and A. Dufresne, Carbohydr. Polym., 78, 422 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    F. Versino, O. V. López, and M. A. García, Ind. Crops Prod., 65, 79 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    D. Pasquini, E. D. M. Teixeira, A. A. D. S. Curvelo, M. N. Belgacem, and A. Dufresne, Ind. Crops Prod., 32, 486 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Lu, L. Weng, and X. Cao, Carbohydr. Polym., 63, 198 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    K. N. Matsui, F. Larotonda, S. Paes, D. Luiz, A. Pires, and J. Laurindo, Carbohydr. Polym., 55, 237 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    M. Jouki, N. Khazaei, M. Ghasemlou, and M. HadiNezhad, Carbohydr. Polym., 96, 39 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    S. Shojaee-Aliabadi, H. Hosseini, M. A. Mohammadifar, A. Mohammadi, M. Ghasemlou, S. M. Ojagh, S. M. Hosseini, and R. Khaksar, Int. J. Biol. Macromol., 52, 116 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    J. Sahari, S. M. Sapuan, E. S. Zainudin, and M. A. Maleque, Fibres Text. East. Eur., 22, 96 (2014).

    Google Scholar 

  21. 21.

    K. Frost, D. Kaminski, G. Kirwan, E. Lascaris, and R. Shanks, Carbohydr. Polym., 78, 543 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    F. Versino and M. A. García, Ind. Crops Prod., 58, 305 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    P. R. Salgado, V. C. Schmidt, S. E. M. Ortiz, A. N. Mauri, and J. B. Laurindo, J. Food Eng., 85, 435 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    F. Debiagi, R. K. Kobayashi, G. Nakazato, L. A. Panagio, and S. Mali, Ind. Crops Prod., 52, 664 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    M. Bertuzzi, M. Armada, and J. Gottifredi, J. Food Eng., 82, 17 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    M. C. N. Villamizar, V. S. Araque, C. A. R. Reyes, and R. S. Silva, Constr. Build. Mater., 36, 276 (2012).

    Article  Google Scholar 

  27. 27.

    S. Bonhomme, A. Cuer, A. Delort, J. Lemaire, M. Sancelme, and G. Scott, Polym. Degrad. Stabil., 81, 441 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    J. Sahari, S. Sapuan, E. Zainudin, and M. A. Maleque, Carbohydr. Polym., 92, 1711 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    M. F. Rosa, B. S. Chiou, E. S. Medeiros, D. F. Wood, L. H. Mattoso, W. J. Orts, and S. H. Imam, J. Appl. Polym. Sci., 111, 612 (2009).

    CAS  Google Scholar 

  30. 30.

    C.-A. Teacă, R. Bodîrlău, and I. Spiridon, Carbohydr. Polym., 93, 307 (2013).

    Article  Google Scholar 

  31. 31.

    S. Mali, M. V. E. Grossmann, M. A. Garcia, M. N. Martino, and N. E. Zaritzky, Carbohydr. Polym., 50, 379 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    M. C. Galdeano, S. Mali, M. V. E. Grossmann, F. Yamashita, and M. A. García, Mater. Sci. Eng.: C, 29, 532 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    J. Prachayawarakorn, S. Chaiwatyothin, S. Mueangta, and A. Hanchana, Mater. Des., 47, 309 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    S. Mali, L. Sakanaka, F. Yamashita, and M. Grossmann, Carbohydr. Polym., 60, 283 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    O. Shakuntala, G. Raghavendra, and A. Samir Kumar, Adv. Mater. Sci. Eng., 2014, 1 (2014).

    Article  Google Scholar 

  36. 36.

    L. Zhang, W. Xie, X. Zhao, Y. Liu, and W. Gao, Thermochim. Acta, 495, 57 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    Q. Zhou, M. W. Rutland, T. T. Teeri, and H. Brumer, Cellulose, 14, 625 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    X. Ma, J. Yu, and J. F. Kennedy, Carbohydr. Polym., 62, 19 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    M. G. Lomelí-Ramírez, S. G. Kestur, R. Manríquez-González, S. Iwakiri, G. B. de Muniz, and T. S. Flores-Sahagun, Carbohydr. Polym., 102, 576 (2014).

    Article  Google Scholar 

  40. 40.

    K. Kaewtatip and J. Thongmee, Mater. Des., 49, 701 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    J. Sahari, S. Sapuan, E. Zainudin, and M. A. Maleque, Mater. Des., 49, 285 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    J. Sahari, S. Sapuan, Z. Ismarrubie, and M. Rahman, Fibres Text. East. Eur., 20, 21 (2012).

    CAS  Google Scholar 

  43. 43.

    J. Fang, P. Fowler, J. Tomkinson, and C. Hill, Carbohydr. Polym., 47, 245 (2002).

    CAS  Article  Google Scholar 

  44. 44.

    D. S. Himmelsbach, S. Khalili, and D. E. Akin, J. Sci. Food Agric., 82, 685 (2002).

    CAS  Article  Google Scholar 

  45. 45.

    J. Raabe, A. D. S. Fonseca, L. Bufalino, C. Ribeiro, M. A. Martins, J. M. Marconcini, L. M. Mendes, and G. H. D. Tonoli, J. Nanomater, doi:10.1155/2015/493439 (2015).

    Google Scholar 

  46. 46.

    M. Sanyang, S. Sapuan, M. Jawaid, M. Ishak, and J. Sahari, Int. J. Polym. Anal. Charact., 20, 627 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    J. Bonilla, E. Fortunati, M. Vargas, A. Chiralt, and J. M. Kenny, J. Food Eng., 119, 236 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    C. G. Flores-Hernández, A. Colín-Cruz, C. Velasco-Santos, V. M. Castaño, J. L. Rivera-Armenta, A. Almendarez-Camarillo, P. E. García-Casillas, and A. L. Martínez-Hernández, Polymers, 6, 686 (2014).

    Article  Google Scholar 

  49. 49.

    F. Rezaei, R. Yunus, and N. A. Ibrahim, Mater. Des., 30, 260 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    S. Mohanty, S. K. Verma, and S. K. Nayak, Compos. Sci. Technol., 66, 538 (2006).

    CAS  Article  Google Scholar 

  51. 51.

    H. Kishi and A. Fujita, Environ. Eng. Manage. J., 7, 517 (2008).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Sapuan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Edhirej, A., Sapuan, S.M., Jawaid, M. et al. Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers Polym 18, 162–171 (2017). https://doi.org/10.1007/s12221-017-6251-7

Download citation

Keywords

  • Cassava film
  • Bio-composite
  • Cassava bagasse
  • Natural fillers
  • Mechanical properties