Skip to main content
Log in

Electroneutral cornstarch by quaternization and sulfosuccinylation to improve the adhesion of cold starch paste to raw cotton for low-temperature sizing

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The objective of this research was to survey the effects of starch quaternization and sulfosuccinylation on the adhesion of cold starch paste to raw cotton fibers for cotton warp sizing at low temperature. Acid-thinned cornstarch (ATS) was quaternized and then sulfosuccinylated to introduce 3-(trimethylammonium chloride)-2-hydroxypropyl and sulfosuccinate substituents onto its backbones. The electroneutrality of starch samples prepared was achieved by maintaining a constant mole ratio (5.3:1) of the two substituents. A series of electroneutral cornstarch (ECS) samples with different levels of the substituents were derived by altering the feed ratio of the modifying reagents to starch for determining desirable level of starch modification. Adverse influences of cotton wax and starch retrogradation on the adhesion of cold starch paste to raw cotton fibers were evaluated to illustrate the effectiveness of starch quaternization and sulfosuccinylation. It was found that the modification was able to alleviate the adverse influence of starch retrogradation and ameliorate the adhesion to the fibers at low temperature. Higher level of the modification led to less retrogradation and resulted in strong adhesion. Furthermore, the adverse influence of cotton wax on the adhesion could be eliminated after a pre-wetting treatment of raw cotton warps with hot water. The adhesion of ECS paste to raw cotton at 60 °C was statically the same as that of ATS at 95 °C when total DS of ECS was 0.0443 or higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Xu in “Theory of Weaving” (S. K. Zhu and W. D. Gao Eds.), pp.72–132, China Textile and Apparel Press, Beijing, 2008.

    Google Scholar 

  2. Z. F. Zhu, Z. J. Liu, M. L. Li, D. S. Xu, and C. L. Li, J. Appl. Polym. Sci., 127, 127 (2013).

    Article  CAS  Google Scholar 

  3. Y. Tong, Appl. Mech. Mater., 508, 223 (2014).

    Article  Google Scholar 

  4. Q. Wang, X. R. Fan, W. D. Gao, and J. Chen, Carbohydr. Res., 341, 2170 (2006).

    Article  CAS  Google Scholar 

  5. M. Hashem, M. El-Bisi, and A. Hebeish, Eng. Life Sci., 2, 23 (2002).

    Article  CAS  Google Scholar 

  6. H. Dave, L. Ledwani, N. Chandwani, N. Chauhan, and S. K. Nema, J. Text. Inst., 105, 586 (2014).

    Article  CAS  Google Scholar 

  7. K. L. Fu, S. W. Dong, and D. N. Lu, Fiber. Polym., 14, 1699 (2013).

    Article  CAS  Google Scholar 

  8. N. Rjiba, M. Nardin, J. Y. Dréan, and R. Frydrych, J. Colloid Interf. Sci., 314, 373 (2007).

    Article  CAS  Google Scholar 

  9. B. C. Goswami, R. D. Anandjiwala, and D. M. Hall, “Textile Sizing”, pp.135–200, 201-272, Marcel Dekker, New York, Basel, 2004.

    Google Scholar 

  10. Y. Y. Zhou, “Theory of Textile Warp Sizes”, pp.115–260, China Textile and Apparel Press, Beijing, 2004.

    Google Scholar 

  11. B. K. Behera and R. Gupta, J. Appl. Polym. Sci., 109, 1076 (2008).

    Article  CAS  Google Scholar 

  12. Z. F. Zhu and M. Wang, J. Adhes. Sci. Technol., 28, 935 (2014).

    Article  CAS  Google Scholar 

  13. J. P. Moreau, Text. Chem. Color., 13, 22 (1981).

    Google Scholar 

  14. Z. F. Zhu and P. H. Chen, J. Appl. Polym. Sci., 106, 2763 (2007).

    Article  CAS  Google Scholar 

  15. J. Trauter, R. Vialon, and T. Stegmeier, Melliand. Eng., 72, 251 (1991).

    Google Scholar 

  16. Z. F. Zhu and Z. Q. Cheng, Starch-Stärke, 60, 315 (2008).

    Article  CAS  Google Scholar 

  17. Z. F. Zhu and R. X. Zhuo, J. China Tex. Univ. (Eng. Ed.), 14, 43 (1997).

    Google Scholar 

  18. M. I. Khalil, A. Hashem, and A. Hebeish, Starch-Stärke, 47, 394 (1995).

    Article  CAS  Google Scholar 

  19. D. B. Solarek in “Modified Starch: Properties and Uses” (O. B. Wurzburg Ed.), pp.113–130, CRC Press, Florida, Boca Raton, 1986.

    Google Scholar 

  20. A. Hebeish, A. A. Aly, A. El-Shafei, and S. Zaghloul, Egypt J. Chem., 52, 73 (2009).

    CAS  Google Scholar 

  21. S. Djordjevic, S. Kovacevic, L. J. Nikolic, M. Miljkovic, and D. Djordjevic, J. Nat. Fiber., 11, 212 (2014).

    Article  CAS  Google Scholar 

  22. K. M. Mostafa and A. A. El-Sanabary, J. Appl. Polym. Sci., 88, 959 (2003).

    Article  CAS  Google Scholar 

  23. S. Saartrat, C. Puttanlek, V. Rungsardthong, and D. Uttapap, Carbohydr. Polym., 61, 211 (2005).

    Article  CAS  Google Scholar 

  24. C. Perera and R. Hoover, Food Chem., 64, 361 (1999).

    Article  CAS  Google Scholar 

  25. O. S. Lawal, Carbohydr. Res., 339, 2673 (2004).

    Article  CAS  Google Scholar 

  26. Z. F. Zhu and Y. Lei, J. Adhes. Sci. Technol., 29, 116 (2015).

    Article  CAS  Google Scholar 

  27. Z. F. Zhu and S. Q. Shen, J. Adhes. Sci. Technol., 28, 1695 (2014).

    Article  CAS  Google Scholar 

  28. Z. F. Zhu and R. X. Zhuo, Eur. Polym. J., 37, 1913 (2001).

    Article  CAS  Google Scholar 

  29. C. M. Conrad, Ind. Eng. Chem. Anal. Ed., 16, 745 (1944).

    Article  CAS  Google Scholar 

  30. A. J. Olusola, O. B. Adebiyi, and K. Riyaad, Starch-Stärke, 67, 561 (2015).

    Article  Google Scholar 

  31. Z. F. Zhu, L. Q. Zhang, M. L. Li, and Y. S. Zhou, Starch- Stärke, 64, 704 (2012).

    Article  CAS  Google Scholar 

  32. E. Q. Jin, Z. F. Zhu, Y. Q. Yang, G. C. Miao, and M. L. Li, J. Text. Inst., 102, 681 (2011).

    Article  CAS  Google Scholar 

  33. S. A. S. Craig, C. C. Maningat, P. A. Seib, and R. C. Hoseney, Cereal Chem., 66, 173 (1989).

    CAS  Google Scholar 

  34. K. S. Sandhu, N. Singh, and S. T. Lim, LWT-Food Sci. Technol., 40, 1527 (2007).

    Article  CAS  Google Scholar 

  35. O. B. Wurzburg in “Modified Starch: Properties and Uses” (O. B. Wurzburg Ed.), pp.3–16, CRC Press, Florida, Boca Raton, 1986.

    Google Scholar 

  36. S. H. Wu, “Polymer Interface and Adhesion”, pp.359–448, Marcel Dekker, New York, 1982.

    Google Scholar 

  37. I. G. Schwarz, S. Kovacevic, D. Katovic, and K. Dimitrovski, Fibres Text. East. Eur., 21, 66 (2013).

    CAS  Google Scholar 

  38. N. Sejri, O. Harzallah, P. Viallier, S. B. Amar, and S. B. Nasrallah, Text. Res. J., 78, 326 (2008).

    Article  CAS  Google Scholar 

  39. Z. F. Zhu and S. J. Cao, Text. Res. J., 74, 253 (2004).

    Article  CAS  Google Scholar 

  40. A. Tecante and J. L. Doublier, Carbohydr. Polym., 40, 221 (1999).

    Article  CAS  Google Scholar 

  41. A. Rindlav-Westling, M. Stading and P. Gatenholm, Biomacromolecules, 3, 84 (2002).

    Article  CAS  Google Scholar 

  42. Z. Liu and J. H. Han, J. Food Sci., 70, E31 (2005).

    Article  CAS  Google Scholar 

  43. K. Sangseethong, S. Lertphanich, and K. Sriroth, Starch-Stärke, 61, 92 (2009).

    Article  CAS  Google Scholar 

  44. J. T. Guo, Y. C. Huang, J. Zhang, and J. W. Yin, Int. J. Food Eng., 10, 243 (2014).

    Article  CAS  Google Scholar 

  45. A. Jansson and F. Thuvander, Carbohydr. Polym., 56, 499 (2004).

    Article  CAS  Google Scholar 

  46. G. F. Hu, J. Y. Chen, and J. P. Gao, Carbohydr. Polym., 76, 291 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Li, W. & Liu, Y. Electroneutral cornstarch by quaternization and sulfosuccinylation to improve the adhesion of cold starch paste to raw cotton for low-temperature sizing. Fibers Polym 18, 1106–1114 (2017). https://doi.org/10.1007/s12221-017-6165-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6165-4

Keywords

Navigation