Fibers and Polymers

, Volume 18, Issue 4, pp 758–766 | Cite as

Dyeing and antibacterial properties of Liriope platyphylla fruit extracts on silk fabrics



Dyeing and antibacterial properties of a natural dye extracted from Liriope platyphylla fruit applied on silk fabrics have been studied. The total phenolic content (1109.13±69.02 mg), total flavonoid content (530.60±89.44 mg), and total anthocyanin content (492.26±77.79 mg) were measured in 100 g fresh weight of L. platyphylla fruits. In addition, ten anthocyanins and four flavanols were identified in L. platyphylla fruits by high performance liquid chromatography with diode array detection coupled with electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS). A broad variation in color shade and color depth can be achieved with mixtures of dye extracts and metal mordants. Purple, blue, and pale green were main color shades of silk fabrics dyed with the extracts. The fastness of dyed silk fabrics except for control dyed fabrics against light, washing, and rubbing were acceptable with at least a grey scale rating of 3. The antibacterial activities of L. platyphylla fruit extracts were retained on dyed silk fabrics even after home washing 30 cycles. Mordanting with metal salt mordant had a positive effect on antibacterial activity of dyed silk fabrics in this study. Among them, aluminum and copper were the most effective mordants for improving antibacterial activity of silk fabrics dyed with L. platyphylla fruit extracts. The costs of natural dyeing of per silk fabrics kg by the extracts from L. platyphylla fruit were also calculated on laboratory scale.


Liriope platyphylla Natural dyes Antibacterial Anthocyanin Flavanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Zhang, L. Wang, L. Luo, and M. W. King, J. Clean. Prod., 80, 204 (2014).CrossRefGoogle Scholar
  2. 2.
    S. Ali, T. Hussain, and R. Nawaz, J. Clean. Prod., 17, 61 (2009).CrossRefGoogle Scholar
  3. 3.
    N. Punrattanasin, M. Nakpathom, B. Somboon, N. Narumol, N. Rungruangkitkrai, and R. Mongkholrattanasit, Ind. Crops Prod., 49, 122 (2013).CrossRefGoogle Scholar
  4. 4.
    A. K. Prusty, T. Das, A. Nayak, and N. B. Das, J. Clean. Prod., 18, 1750 (2010).CrossRefGoogle Scholar
  5. 5.
    X. X. Feng, L. L. Zhang, J. Y. Chen, and J. C. Zhang, J. Clean. Prod., 15, 366 (2007).CrossRefGoogle Scholar
  6. 6.
    D. Grifoni, L. Bacci, G. Zipoli, L. Albanese, and F. Sabatini, Dyes Pigment., 91, 279 (2011).CrossRefGoogle Scholar
  7. 7.
    L. Liu, J. Zhang, and R.-C. Tang, React. Funct. Polym., 73, 1559 (2013).CrossRefGoogle Scholar
  8. 8.
    H. El Gharras, Int. J. Food Sci. Tech., 44, 2512 (2009).Google Scholar
  9. 9.
    K. M. Kalili and A. de Villiers, J. Sep. Sci., 34, 854 (2011).CrossRefGoogle Scholar
  10. 10.
    R. L. Jackman and R. Y. Yada, J. Food Biochem., 11, 279 (1987).CrossRefGoogle Scholar
  11. 11.
    A. Castañeda-Ovando, M. D. L. Pacheco-Hernández, M. E. Páez-Hernández, J. A. Rodríguez, and C. A. Galán- Vidal, Food Chem., 113, 859 (2009).Google Scholar
  12. 12.
    J. M. Awika, L. W. Rooney, and R. D. Waniska, Food Chem., 90, 293 (2005).CrossRefGoogle Scholar
  13. 13.
    R. L. Jackman and R. Y. Yada, J. Food Biochem., 11, 201 (1987).CrossRefGoogle Scholar
  14. 14.
    G.-T. Chang, S.-K. Kang, J.-H. Kim, K.-H. Chung, Y.-C. Chang, and C.-H. Kim, J. Ethnopharmacol., 102, 430 (2005).CrossRefGoogle Scholar
  15. 15.
    C. F. Chau and S. H. Wu, Trends Food Sci. Tech., 17, 313 (2006).CrossRefGoogle Scholar
  16. 16.
    S. B. Choi, J. D. Wha, and S. Park, Life Sci., 75, 2653 (2004).CrossRefGoogle Scholar
  17. 17.
    J. H. Lee and M.-G. Choung, Food Chem., 127, 1686 (2011).CrossRefGoogle Scholar
  18. 18.
    Y. Shin, J. A. Ryu, R. H. Liu, J. F. Nock, K. Polar-Cabrera, and C. B. Watkins, J. Food Sci., 73, S339 (2008).CrossRefGoogle Scholar
  19. 19.
    B.-G. Heo, H.-G. Jang, J. Y. Cho, J. Namiesnik, Z. Jastrzebski, K. Vearasilp, G. González-Aguilar, A. L. Martinez-Ayala, M. Suhaj, and S. Gorinstein, Ind. Crops Prod., 42, 429 (2013).CrossRefGoogle Scholar
  20. 20.
    M. J. Simirgiotis, J. Bórquez, and G. Schmeda-Hirschmann, Food Chem., 139, 289 (2013).CrossRefGoogle Scholar
  21. 21.
    X. Wang, H. Tong, F. Chen, and J. D. Gangemi, Food Chem., 123, 1156 (2010).CrossRefGoogle Scholar
  22. 22.
    J. Lee, C. Rennaker, and R. E. Wrolstad, Food Chem., 110, 782 (2008).CrossRefGoogle Scholar
  23. 23.
    Ö. Turfan, M. Türkyilmaz, O. Yemis, and M. Özkan, Food Chem., 129, 1644 (2011).CrossRefGoogle Scholar
  24. 24.
    J. Côté, S. Caillet, D. Dussault, J. F. Sylvain, and M. Lacroix, Food Res. Int., 44, 2922 (2011).CrossRefGoogle Scholar
  25. 25.
    J.-M. Kong, L.-S. Chia, N.-K. Goh, T.-F. Chia, and R. Brouillard, Phytochemistry, 64, 923 (2003).CrossRefGoogle Scholar
  26. 26.
    H. H. Wijngaard, C. Rößle, and N. Brunton, Food Chem., 116, 202 (2009).CrossRefGoogle Scholar
  27. 27.
    A. Zuorro and R. Lavecchia, J. Clean. Prod., 34, 49 (2012).CrossRefGoogle Scholar
  28. 28.
    V. Louli, N. Ragoussis, and K. Magoulas, Bioresource Technol., 92, 201 (2004).CrossRefGoogle Scholar
  29. 29.
    P. Chantaro, S. Devahastin, and N. Chiewchan, LWT - Food Sci. Technol., 41, 1987 (2008).Google Scholar
  30. 30.
    J. F. Ayala-Zavala, C. Rosas-Domínguez, V. Vega-Vega, and G. A. González-Aguilar, J. Food Sci., 75, R175 (2010).CrossRefGoogle Scholar
  31. 31.
    R. Bobinaite, P. Viškelis, and P. R. Venskutonis, Food Chem., 132, 1495 (2012).CrossRefGoogle Scholar
  32. 32.
    C. W. I. Haminiuk, G. M. Maciel, M. S. V. Plata-Oviedo, and R. M. Peralta, Int. J. Food Sci. Tech., 47, 2023 (2012).CrossRefGoogle Scholar
  33. 33.
    J. Meng, Y. Fang, J. Gao, L. Qiao, A. Zhang, Z. Guo, M. Qin, J. Huang, Y. Hu, and X. Zhuang, J. Food Sci., 77, C8 (2012).CrossRefGoogle Scholar
  34. 34.
    J. Lee and C. E. Finn, J. Sci. Food Agr., 87, 2665 (2007).CrossRefGoogle Scholar
  35. 35.
    M. J. Cho, L. R. Howard, R. L. Prior, and J. R. Clark, J. Sci. Food Agr., 84, 1771 (2004).CrossRefGoogle Scholar
  36. 36.
    M. Fanzone, F. Zamora, V. Jofré, M. Assof, C. Gómez-Cordovés, and Á. Peña-Neira, J. Sci. Food Agr., 92, 704 (2012).CrossRefGoogle Scholar
  37. 37.
    E. Alexandra Pazmiño-Durán, M. M. Giusti, R. E. Wrolstad, and M. B. A. Glória, Food Chem., 73, 327 (2001).Google Scholar
  38. 38.
    Y. Lu, L. Y. Foo, and H. Wong, Tetrahedron Lett., 43, 6621 (2002).CrossRefGoogle Scholar
  39. 39.
    E. Sariburun, S. Sahin, C. Demir, C. Türkben, and V. Uylaser, J. Food Sci., 75, C328 (2010).CrossRefGoogle Scholar
  40. 40.
    C. Qin, Y. Li, W. Niu, Y. Ding, X. Shang, and C. Xu, Czech J. Food Sci., 29, 171 (2011).Google Scholar
  41. 41.
    M. Dueñas, J. J. Pérez-Alonso, C. Santos-Buelga, and T. Escribano-Bailón, J. Food Compos. Anal., 21, 107 (2008).CrossRefGoogle Scholar
  42. 42.
    Y. S. Oh, J. H. Lee, S. H. Yoon, C. H. Oh, D. S. Choi, E. Choe, and M. Y. Jung, J. Food Sci., 73, C378 (2008).CrossRefGoogle Scholar
  43. 43.
    P. Dugo, O. Favoino, M. Lo Presti, R. Luppino, G. Dugo, and L. Mondello, J. Sep. Sci., 27, 1458 (2004).CrossRefGoogle Scholar
  44. 44.
    R. Flamini, F. Agnolin, R. Seraglia, M. D. Rosso, A. Panighel, F. D. Marchi, A. D. Vedova, and P. Traldi, Rapid Commun. Mass Sp., 26, 355 (2012).CrossRefGoogle Scholar
  45. 45.
    S. Pati, I. Losito, G. Gambacorta, E. L. Notte, F. Palmisano, and P. G. Zambonin, J. Mass Spectrom., 41, 861 (2006).CrossRefGoogle Scholar
  46. 46.
    F. Mbeunkui, M. H. Grace, G. G. Yousef, and M. Ann Lila, J. Sep. Sci., 35, 1682 (2012).CrossRefGoogle Scholar
  47. 47.
    C. M. Rommens, C. M. Richael, H. Yan, D. A. Navarre, J. Ye, M. Krucker, and K. Swords, Plant Biotechnol. J., 6, 870 (2008).CrossRefGoogle Scholar
  48. 48.
    P. Dugo, P. Donato, F. Cacciola, M. Paola Germanò, A. Rapisarda, and L. Mondello, J. Sep. Sci., 32, 3627 (2009).CrossRefGoogle Scholar
  49. 49.
    A. L. Piccinelli, A. Veneziano, S. Passi, F. D. Simone, and L. Rastrelli, Food Chem., 100, 344 (2007).CrossRefGoogle Scholar
  50. 50.
    C. Boga, C. Delpivo, B. Ballarin, M. Morigi, S. Galli, G. Micheletti, and S. Tozzi, Dyes Pigment., 97, 9 (2013).CrossRefGoogle Scholar
  51. 51.
    C. A. Rice-Evans, N. J. Miller, and G. Paganga, Free Radical Bio. Med., 20, 933 (1995).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.College of Textile and Clothing EngineeringYancheng Institute of Industry TechnologyYanchengP. R. China
  2. 2.Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Ministry of Education) Zhejiang Sci-Tech UniversityHangzhouP. R. China

Personalised recommendations