Advertisement

Fibers and Polymers

, Volume 18, Issue 4, pp 675–681 | Cite as

Modification of guar gum through grafting of acrylamide with potassium bromate/thiourea redox initiating system

Article

Abstract

In the present work, graft copolymers of acrylamide onto guar gum were synthesized by free radical polymerization using potassium bromate/thiourea redox initiating system. The guar gum and guar gum-g-polyacrylamide were characterized by infrared spectroscopy and thermogravimetric analysis. It was found that the guar gum-g-polyacrylamid was thermally more stable than pure guar gum. The grafting ratio, grafting efficiency, add-on, and conversion increased with the concentration of bromate and acrylamide, whereas they decreased with increasing the concentration of guar gum. The grafting ratio and grafting efficiency showed maximum value at the concentration of thiourea and hydrogen ions of 3.2×10-3 mol dm-3 and 4.0×10-3 mol dm-3, respectively, but decreased with further increasing the thiourea and hydrogen ions concentrations. The increase in temperature from 30 to 45 °C resulted in increasing the grafting ratio while decreasing the conversion. The optimum reaction time for the graft copolymerization was found to be 2 h. Compared to the parent guar gum, the graft copolymer showed higher water swelling capacity and metal ion sorption, as well as better flocculant behaviors.

Keywords

Graft copolymer Guar gum Acrylamide Potassium bromate Thiourea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. El Sayed, A. Razik, D. S. Badawy, and E. A. E. Nahas, Int. J. Modern Org. Chem., 4, 1 (2015).Google Scholar
  2. 2.
    N. Isiklan and F. Kursun, Polym. Bull., 70, 1065 (2013).CrossRefGoogle Scholar
  3. 3.
    L. Upadhyaya, J. Singh, V. Agarwal, A. C. Pandey, S. P. Verma, P. Dase, and R. P. Tewari, Proc. Biochem., 50, 678 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Abdallah, Portugal. Electro. Acta, 22, 161 (2004).CrossRefGoogle Scholar
  5. 5.
    J. L. M. Silveira and T. M. B. Bresolin, Quim. Nova, 34, 292 (2011).CrossRefGoogle Scholar
  6. 6.
    G. Dodi, D. Hritcu, and M. I. Popa, Cellulose Chem. Technol., 45, 171 (2011).Google Scholar
  7. 7.
    P. Adhikary, S. Krishnamoorthi, and R. P. Singh, J. Appl. Polym. Sci. 120, 2621 (2011).CrossRefGoogle Scholar
  8. 8.
    K. N. Venugopal and M. Abhilash, Int. J. Pharm. Sci. Res., 1, 28 (2010).Google Scholar
  9. 9.
    P. Malik, M. Srivastava, R. Verma, M. Kumar, D. Kumar, and J. Singh, Mater. Sci. Eng. C, 58, 432 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Oblonsek, S. S. Turk, and R. Lapasin, Rheol. Acta, 42, 491 (2003).CrossRefGoogle Scholar
  11. 11.
    B. R. Sharma, V. Kumar, and P. L. Soni, J. Macromol. Sci. Part A - Pure Appl. Chem., 40, 49 (2003).Google Scholar
  12. 12.
    A. V. Singh and R. Singh, J. Eng. Sci. Manage. Edu., 3, 47 (2010).Google Scholar
  13. 13.
    A. Srivastava, J. Tripathy, M. M. Mishra, and K. Behari, J. Appl. Polym. Sci. 106, 1353 (2007).CrossRefGoogle Scholar
  14. 14.
    A. Tiwari and S. P. Singh, J. Appl. Polym. Sci. 108, 1169 (2008).CrossRefGoogle Scholar
  15. 15.
    W. J. Reynolds and R. B. Wasser in “Pulp and Paper: Chemistry and Chemical Technology” (J. P. Casey Ed.), Vol. 3, pp.1447–1474, Wiley-Intersciences, New York, 1981.Google Scholar
  16. 16.
    H. G. Flock and E. G. Rausch in “Water Soluble Polymers” (N. M. Bikales Ed.), p.42, Plenum Press, New York, 1973.Google Scholar
  17. 17.
    J. Choi, D. Ka, T. Chung, J. Jung, G. Koo, T. Uhm, S. H. Jung, S. Park, and H.-T. Jung, Macromol. Res., 23, 518 (2015).CrossRefGoogle Scholar
  18. 18.
    R. W. Roth, U. S. Patent, 2801985 (1957).Google Scholar
  19. 19.
    A. S. J. Hoffman, A. Afrassiabi, and L. C. Dong, J. Control. Release, 4, 213 (1987).CrossRefGoogle Scholar
  20. 20.
    S. Ashraf, H.-K. Park, H. Park, and S.-H. Lee, Macromol. Res., 24, 297 (2016).CrossRefGoogle Scholar
  21. 21.
    L. Upadhyaya, J. Singh, V. Agarwal, and R. P. Tewari, Carbohydr. Polym., 91, 452 (2013).CrossRefGoogle Scholar
  22. 22.
    B. Raney and D. Zuchowska, Polym. J., 9, 623 (1987).Google Scholar
  23. 23.
    M. Li, E. Jin, Z. Qiao, and D. Mao, Fiber. Polym., 16, 1098 (2015).CrossRefGoogle Scholar
  24. 24.
    A. M. Fuxman, K. B. McAuley, and L. J. Schreiner, Chem. Eng. Sci., 60, 1277 (2005).CrossRefGoogle Scholar
  25. 25.
    A. Rashidzadeh, A. Olad, and D. Salari, Fiber. Polym., 16, 354 (2015).CrossRefGoogle Scholar
  26. 26.
    U. D. N. Bajpai and S. Rai, J. Appl. Polym. Sci. 35, 1169 (1988).CrossRefGoogle Scholar
  27. 27.
    U. D. N. Bajpai, A. Jain, and A. K. Bajpai, Acta Polym., 41, 557 (1990).CrossRefGoogle Scholar
  28. 28.
    U. D. N. Bajpai and A. Jain, Polym. Int., 31, 1 (1993).CrossRefGoogle Scholar
  29. 29.
    U. D. N. Bajpai, A. Jain, and S. Rai, J. Appl. Polym. Sci. 39, 2187 (1990).CrossRefGoogle Scholar
  30. 30.
    M. P. Gowrav, H. Umme, G. S. Hosakote, A. M. O. Riyaz, and A. Srivastava, RSC Adv., 5, 80005 (2015).Google Scholar
  31. 31.
    A. Chattopadhyay, Int. J. Chem. Sci., 2, 5 (2015).Google Scholar
  32. 32.
    J. S. Shukla and D. C. Misra, Makromol. Chem., 158, 9 (1972).CrossRefGoogle Scholar
  33. 33.
    G. F. Fanta in “Block and Graft Copolymerization” (R. J. Ceresa Ed.), pp.29–45, Wiley-Interscience, London, England, 1973.Google Scholar
  34. 34.
    H. A. Abdel-Rehim, A. H. El-Sayed, and M. Ali, J. Appl. Polym. Sci. 76, 125 (2000).CrossRefGoogle Scholar
  35. 35.
    J. Bassett, R. C. Denney, G. H. Jeffery, and J. Mendham, “Vogel’s Textbook of Quantitative Inorganic Analysis”, 4th ed., p.370, Longman Press, London, 1978.Google Scholar
  36. 36.
    B. L. Rivas, H. A. Maturana, M. J. Molina, M. R. Gomez-Anton, and I. F. Pierola, J. Appl. Polym. Sci. 67, 1109 (1978).CrossRefGoogle Scholar
  37. 37.
    S. R. Palit and R. S. Konar, J. Polym. Sci., 52, 85 (1962).CrossRefGoogle Scholar
  38. 38.
    V. D. Athawale and V. Lele, Carbohydr. Polym., 35, 21 (1998).CrossRefGoogle Scholar
  39. 39.
    A. Fakhru’L-Razi, I. Y. M. Qudsieh, M. Z. A. Rahman, and M. B. Ahmad, J. Appl. Polym. Sci. 82, 1375 (2001).CrossRefGoogle Scholar
  40. 40.
    T. Sugimura, N. Yasumoto, and Y. Minoura, J. Polym. Sci., Part A, 3, 2935 (1965).Google Scholar
  41. 41.
    R. Kumar, M. Tripathi, P. K. Pandey, A. Srivastava, J. Tripathy, and K. Behari, Macromol. Chem. Phys., 202, 1873 (2001).CrossRefGoogle Scholar
  42. 42.
    A. Srivastava, V. Mishra, S. K. Singh, and R. Kumar, epolym., 006, 1 (2009).Google Scholar
  43. 43.
    M. M. Nasef, H. Saidi, H. M. Nor, and O. M. Foo, J. Appl. Polym. Sci. 76, 1 (2000).CrossRefGoogle Scholar
  44. 44.
    V. S. Pandey. S. K. Verma, and K. Behari, Carbohydr. Polym., 110, 285 (2014).CrossRefGoogle Scholar
  45. 45.
    S. R. Deshmukh, R. P. Singh, and P. N. Chaturvedi, J. Appl. Polym. Sci. 30, 4013 (1985).CrossRefGoogle Scholar
  46. 46.
    J. Bratby, “Coagulation and Focculation”, UK, Uplands Press Ltd., Croydon Cambridge, 1980.Google Scholar
  47. 47.
    J. Gregory, “Polymer Flocculation in Flowing Dispersions” in “The Effect of Polymers on Dispersion Properties” (T. F. Tadros Ed.), Academic Press, London, 1982.Google Scholar
  48. 48.
    T. A. Erciyes, M. Erim, B. Hazer, and Y. Yagci, Angew. Makromol. Chemie, 200, 163 (1992).CrossRefGoogle Scholar
  49. 49.
    S. Ungeheur, H. W. Bewersdorff, and R. P. Singh, J. Appl. Polym. Sci. 37, 2926 (1989).Google Scholar
  50. 50.
    S. R. Deshmukh and R. P. Singh, J. Appl. Polym. Sci. 33, 1963 (1987).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of ChemistryManav Rachna UniversityFaridabadIndia
  2. 2.Department of Organic Materials and Fiber EngineeringSoongsil UniversitySeoulKorea
  3. 3.Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil UniversitySeoulKorea

Personalised recommendations