Skip to main content
Log in

Oriented bacterial cellulose-glass fiber nanocomposites with enhanced tensile strength through electric field

  • Communication
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) is a kind of excellent nano-sized fibrous material produced by some microorganisms. However, commonly obtained randomly-oriented web-like form of BC nanofibers impedes achieving their full potential applications in some cases. In the present study, a facile method has been developed to orient the nanofibers through electric field. The nanofibers with an oriented structure were observed when BC producer (Gluconacetobacter xylinus) was cultured under an electric field of 10 mA. Subsequently, an oriented bacterial cellulose-glass fiber nanocomposite was prepared using a glass fiber and BC matrix under an electric field. The nanocomposites exhibited a significant improvement in tensile strength and thermostability. With an addition of 20 wt% GF, the tensile strength of the composite in perpendicular direction to DC was significantly increased to 1.44-fold of that in parallel direction. It indicated by FT-IR and XRD that the chemical structure and crystallinity of BC were not affected by addition of glass fiber. The study opens up new possibilities for direct fabrication of mechanically robust BC nanocomposites that can replace traditional BC and composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Kirdponpattara, A. Khamkeaw, N. Sanchavanakit, P. Pavasant, and M. Phisalaphong, Carbohydr. Polym., 132, 146 (2015).

    Article  CAS  Google Scholar 

  2. P. Ross, R. Mayer, and M. Benziman, Microbiol. Mol. Biol. R., 55, 35 (1991).

    CAS  Google Scholar 

  3. X. X. Wen, Y. D. Zheng, J. Wu, L. N. Wang, Z. Y. Yuan, J. Peng, and H. Y. Meng, Int. J. Nanomed., 10, 4623 (2015).

    CAS  Google Scholar 

  4. H. X. Zhu, S. R. Jia, H. J. Yang, W. H. Tang, Y. Y. Jia, and Z. L. Tan, Food Sci. Biotechnol., 19, 1479 (2010).

    Article  CAS  Google Scholar 

  5. H. X. Zhu, S. R. Jia, T. Wan, Y. Y. Jia, H. J. Yang, J. Li, L. Yan, and C. Zhong, Carbohydr. Polym., 86, 1558 (2011).

    Article  CAS  Google Scholar 

  6. X. N. Yang, D. D. Xue, J. Y. Li, M. Liu, S. R. Jia, L. Q. Chu, F. Wahid, Y. M. Zhang, and C. Zhong, Carbohydr. Polym., 136, 1152 (2016).

    Article  CAS  Google Scholar 

  7. J. R. Colvin, Can. J. Microbiol., 12, 909 (1966).

    Article  CAS  Google Scholar 

  8. S. S. Zang, Z. Sun, K. Liu, G. Wang, R. Zhang, B. F. Liu, and G. Yang, Mater. Lett., 128, 314 (2014).

    Article  CAS  Google Scholar 

  9. T. Kondo, E. Togawa, and R. M. Brown, Biomacromolecules, 2, 1324 (2001).

    Article  CAS  Google Scholar 

  10. T. Kondo, M. Nojiri, Y. Hishikawa, E. Togawa, D. Romanovicz, and R. M. Brown, Proc. Natl. Acad. Sci. U. S. A., 99, 14008 (2002).

    Article  CAS  Google Scholar 

  11. Y. Z. Wan, D. Hu, G. Y. Xiong, D. Y. Li, R. S. Guo, and H. L. Luo, Mater. Chem. Phys., 149, 7 (2015).

    Article  Google Scholar 

  12. H. S. Barud, C. Barrios, T. Regiani, R. F. C. Marques, M. Verelst, J. Dexpert-Ghys, Y. Messaddeq, and S. J. L. Ribeiro, Mater. Sci. Eng. C-Biomim. Supramol. Syst., 28, 515 (2008).

    Article  CAS  Google Scholar 

  13. Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng., 12, 1197 (2006).

    Article  CAS  Google Scholar 

  14. L. Yan, S. R. Jia, X. T. Zheng, C. Zhong, M. Liu, and G. J. Xu, Adv. Mater. Res., 550-553, 1108 (2012).

    Article  CAS  Google Scholar 

  15. M. Liu, C. Zhong, Y. M. Zhang, Z. M. Xu, C. S. Qiao, and S. R. Jia, Front. Microbiol., 7, 331 (2016).

    Google Scholar 

  16. M. Ul-Islam, T. Khan, and J. K. Park, Carbohydr. Polym., 88, 596 (2012).

    Article  CAS  Google Scholar 

  17. C. Zhong, G. C. Zhang, M. Liu, X. T. Zheng, P. P. Han, and S. R. Jia, Appl. Microbiol. Biotechnol., 97, 6189 (2013).

    Article  CAS  Google Scholar 

  18. Y. Zheng, J. Reinf. Plast. Compos., 24, 223 (2005).

    Article  CAS  Google Scholar 

  19. S. Bottan, F. Robotti, P. Jayathissa, A. Hogglin, N. Bahamonde, J. A. Heredia-Guerrero, I. S. Bayer, A. Scarpellini, H. Merker, N. Lindenblatt, D. Poulikakos, and A. Ferrari, ACS Nano, 9, 206 (2015).

    Article  CAS  Google Scholar 

  20. V. B. Gupta and V. K. Kothari, “Manufactured Fibre Technology”, pp.544–546, Chapman and Hall, London, 1997.

    Book  Google Scholar 

  21. J. Sugiyama, R. Vuong, and H. Chanzy, Macromolecules, 24, 4168 (1991).

    Article  CAS  Google Scholar 

  22. D. Y. Kim, Y. Nishiyama, and S. Kuga, Cellulose, 9, 361 (2002).

    Article  CAS  Google Scholar 

  23. L. Fang and J. M. Catchmark, Cellulose, 21, 3965 (2014).

    Article  CAS  Google Scholar 

  24. M. Roman and W. T. Winter, Biomacromolecules, 5, 1671 (2004).

    Article  CAS  Google Scholar 

  25. B. V. Mohite and S. V. Patil, Carbohydr. Polym., 106, 132 (2014).

    Article  CAS  Google Scholar 

  26. K. Kafle, H. Shin, C. M. Lee, S. Park, and S. H. Kim, Sci. Rep., 5, 15102 (2015).

    Article  CAS  Google Scholar 

  27. P. Ahvenainen, I. Kontro, and K. Svedström, Cellulose, 23, 1073 (2016).

    Article  CAS  Google Scholar 

  28. K. Watanabe, M. Tabuchi, Y. Morinaga, and F. Yoshinaga, Cellulose, 5, 187 (1998).

    Article  CAS  Google Scholar 

  29. J. Yao, S. Chen, Y. Chen, B. Wang, Q. Pei, and H. Wang, ACS Appl. Mater. Inter., doi:10.1021/acsami.6b14650 (2017).

    Google Scholar 

  30. T. H. Hsieh, A. J. Kinloch, K. Masania, A. C. Taylor, and S. Sprenger, Polymer, 51, 6284 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhong, C., Zheng, X. et al. Oriented bacterial cellulose-glass fiber nanocomposites with enhanced tensile strength through electric field. Fibers Polym 18, 1408–1412 (2017). https://doi.org/10.1007/s12221-017-1232-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-1232-4

Keywords

Navigation