Skip to main content

Tuning the properties of PVDF or PVDF-HFP fibrous materials decorated with ZnO nanoparticles by applying electrospinning alone or in conjunction with electrospraying

Abstract

Novel composite nanofibrous materials of poly(vinylidene fluoride) (PVDF) or poly(vinylidene fluoride-cohexafluoropropylene) (PVDF-HFP) and ZnO nanoparticles were prepared by conjunction of electrospinning and electrospraying techniques. Simultaneous electrospinning of concentrated solution of PVDF or PVDF-HFP and electrospraying of suspension of ZnO in diluted PVDF or PVDF-HFP solution enable the preparation of materials consisting of fibers on which ZnO was deposited on the fibers’ surface (design type “on”). These fibrous materials were compared with materials consisting of PVDF or PVDF-HFP fibers in which ZnO was incorporated in the fibers (design type “in”) and which were obtained by one-pot electrospinning of a suspension of ZnO nanoparticles in concentrated PVDF or PVDF-HFP solution. The fiber morphology and the presence of ZnO “in” or “on” the fibers were observed by scanning electron microscopy (SEM) and by transmission electron microscopy (TEM). The effect of the used technique on the type, size and shape of the obtained structures was discussed. The fibrous mats were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), contact angle measurements and mechanical tests as well. It was found that the decoration of fibers with ZnO resulted in increase of their thermal stability and hydrophobicity. The microbiological tests showed that the materials of design type “on” possessed strong antibacterial activity against the pathogenic microorganism Staphylococcus aureus. The results suggest that, due to their antibacterial activity, the obtained composite materials are suitable for wound dressing applications.

This is a preview of subscription content, access via your institution.

References

  1. B. Bhushan, Y. C. Jung, and K. Koch, Phil. Trans. R. Soc. A, 367, 1631 (2009).

    CAS  Article  Google Scholar 

  2. R. Crawford and E. Ivanova, “Superhydrophobic Surfaces?, Elsevier Inc., ISBN: 978-0-12-801109-6 (2015).

    Google Scholar 

  3. N. Kimura, T. Sakumoto, Y. Mori, K. Wei, B. Kim, K. Song, and I. Kim, Compos. Sci. Technol., 92, 120 (2014).

    CAS  Article  Google Scholar 

  4. V. Vatanpour, M. Yekavalangi, and M. Safarpour, Sep. Purif. Technol., 163, 300 (2016).

    CAS  Article  Google Scholar 

  5. J. Ji, F. Liu, N. Hashim, M. Abed, and K. Li, React. Funct. Polym., 86, 134 (2015).

    CAS  Article  Google Scholar 

  6. F. Liu, N. Hashim, Y. Liu, M. Abed, and K. Li, J. Membr. Sci., 375, 1 (2011).

    CAS  Article  Google Scholar 

  7. E. Thangavel, S. Ramasundaram, S. Pitchaimuthu, S. Hong, S. Lee, S. Yoo, D. Kim, E. Ito, and Y. Kang, Compos. Sci. Technol., 90, 187 (2014).

    CAS  Article  Google Scholar 

  8. H. Guo, Z. Li, S. Dong, W. Chen, L. Deng, Y. Wang, and D. Ying, Colloid Surf. B-Biointerfaces, 96, 29 (2012).

    CAS  Article  Google Scholar 

  9. C. Su, J. Shih, M. Huang, C. Wang, W. Shih, and Y. Liu, Fiber. Polym., 13, 698 (2012).

    CAS  Article  Google Scholar 

  10. N. Chanunpanich, B. Lee, and H. Byun, Macromol. Res., 16, 212 (2008).

    CAS  Article  Google Scholar 

  11. A. Sirelkhatim, S. Mahmud, A. Seeni, N. Kaus, L. Ann, S. Bakhori, H. Hasan, D. Hasan, and D. Mohamad, Nano-Micro Lett., 7, 219 (2015).

    CAS  Article  Google Scholar 

  12. Y. Qing, C. Yang, C. Hu, Y. Zheng, and C. Liu, Appl. Surf. Sci., 326, 48 (2015).

    CAS  Article  Google Scholar 

  13. A. Kolodziejczak-Radzimska and T. Jesionowski, Materials, 7, 2833 (2014).

    CAS  Article  Google Scholar 

  14. M. Spasova, N. Manolova, N. Markova, and I. Rashkov, Appl. Surf. Sci., 363, 363 (2016).

    CAS  Article  Google Scholar 

  15. N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, R. Hazan, Evid. Based. Complement. Alternat. Med., Article ID 246012, 1 (2015).

    Article  Google Scholar 

  16. W. S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2016.

  17. M. Spasova, R. Mincheva, D. Paneva, N. Manolova, and I. Rashkov, J. Bioact. Compat. Polym., 21, 465 (2006).

    CAS  Article  Google Scholar 

  18. Y. D. Wang and M. Cakmak, J. Appl. Polym. Sci. 68, 909 (1998).

    CAS  Article  Google Scholar 

  19. G. Yeh, R. Hosemann, J. Loboda-Cackovic, and H. Cackovic, Polymer, 17, 309 (1976).

    CAS  Article  Google Scholar 

  20. Y. Xie, Q. Zhang, and X. Fan, J. Appl. Polym. Sci. 89, 2686 (2003).

    CAS  Article  Google Scholar 

  21. M. Neidhofer, F. Beaume, L. Ibos, A. Bernes, and C. Lacabanne, Polymer, 45, 1679 (2004).

    CAS  Article  Google Scholar 

  22. S. Talam, S. Karumuri, and N. Gunnam, ISRN Nanotechnology, 2012, doi:10.5402/2012/372505.

    Google Scholar 

  23. D. Virovska, D. Paneva, N. Manolova, I. Rashkov, and D. Karashanova, Mater. Sci. Eng. C, 60, 184 (2016).

    CAS  Article  Google Scholar 

  24. T. He, W. Zhou, A. Bahi, H. Yang, and F. Ko, Chem. Eng. J., 252, 327 (2014).

    CAS  Article  Google Scholar 

  25. R. Augustine, H. N. Malik, D. K. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal, and S. Thomas, J. Polym. Res., 21, 347 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliya Rashkov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spasova, M., Manolova, N., Markova, N. et al. Tuning the properties of PVDF or PVDF-HFP fibrous materials decorated with ZnO nanoparticles by applying electrospinning alone or in conjunction with electrospraying. Fibers Polym 18, 649–657 (2017). https://doi.org/10.1007/s12221-017-1189-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-1189-3

Keywords

  • PVDF
  • ZnO
  • Electrospinning
  • Electrospraying
  • Antibacterial activity